

From Relational to a Column-based Database: A quasi-

experiment

Agustín Pane1, Nahuel Goldy1, Federico Madoery1, Emiliano Kira1, Emiliano

Reynares1,2 and Ma. Laura Caliusco1,2

1CIDISI Research Center – UTN – FRSF, Lavaise 610, Santa Fe, Argentina

2CONICET

{agustin.pane, nahuelsg.64, fede.madoery}@gmail.com,

emi_k_10@hotmail.com,

{ereynares, mcaliusc}@frsf.utn.edu.ar

Abstract. This work reports the authors’ experience migrating a dataset from relational

to a column-based database. The goal of the experiment is to identify and depict the

several challenges faced by a group of advanced students in Software Engineering with

little prior experience in database administration. As a first dive and considering the

initial conditions, the authors consider this work a success in terms of learning.

1 Introduction

A NoSQL database environment is a non-relational and largely distributed database

system that enables the ad-hoc organization and analysis of extremely high-volume and

disparate data types. NoSQL databases are sometimes referred to as cloud databases,

non-relational databases, big data databases and a myriad of other terms. They were

developed in response to the sheer volume of data being generated, stored and analyzed

by modern users (user-generated data) and their applications (machine-generated data)

[Han et. al, 2011]. The mainstream big data platforms adopt NoSQL to break and

transcend the rigidity of normalized relational schemas [Chen and Chun, 2014].

While relational databases have been used for decades to store data -and they still

represent a viable solution for many use cases - the NoSQL approach is chosen today for

scalability and performance reasons. However the implementation of a NoSQL database

may seem confusing or even overwhelming.

NoSQL databases are grouped into four primary product categories with different

architectural characteristics: document databases, graph databases, key-value databases

and wide column stores. Many NoSQL platforms are also tailored for specific purposes,

and they may or may not work well with SQL technologies, which could be a necessity

in some organizations. In addition, most NoSQL systems are not suitable replacements

for relational databases in transaction processing applications, because they lack full

ACID1 compliance for guaranteeing transactional integrity and data consistency.

Performing of experiments would allow to identify the required knowledge and the main

issues of a relational to NoSQL migration process, besides the analysis regarding the

selection of some kind of NoSQL alternative for a specific environment [Martínez and

Aizemberg, 2015].

A quasi-experiment depicting the migration process from a relational to a No-SQL

database is presented in this work. The paper is organized as follow. Section 2

introduces the main concepts related to No-SQL databases. Section 3 describes the

experiment. Section 4 presents an analysis of the results. Finally, conclusions are

discussed in Section 5.

2 NoSQL databases

The term NoSQL (Not only SQL) describes a broad set of databases lacking the

properties of traditional relational databases, which are generally not queried by means

of SQL (Structured Query Language).

By design, NoSQL databases and management systems are relation-less (or schema-

less). They are not based on a single model and each database, depending on their target-

functionality, adopt a different one.

2.1 Data Model

NoSQL databases vary widely by data model and have some distinct features on its own.

There are different data models and functioning systems for NoSQL databases, as

described following [Leavitt, 2010]:

 Key / Value: A key-value database allows the user to store data in a schema-less

manner, usually some kind of programming language datatype or an object. The

data consists of two parts: 1) a string as the key, and 2) the actual data as the

value. Examples of Key/Value databases are Redis2 and MemcacheDB3.

 Column: Rather than store sets of information in a heavily structured table of

columns and rows with uniform sized fields for each record, as is the case with

relational databases, column-oriented databases contain an extendable column of

closely related data. Examples of column-oriented databases are: Cassandra4

and HBase5.

 Document: While each database implementation differs on the details of the

“document” definition, they generally assume that a document encapsulates and

encodes data (or information) in some standard format or encoding. Encodings

include XML, YAML, and JSON languages as well as binary formats like

1 ACID - Atomicity, Consistency, Isolation, Durability
2 https://redis.io/
3 http://memcachedb.org/
4 http://cassandra.apache.org/
5 https://hbase.apache.org/

BSON. Examples of document-oriented databases are: MongoDB6 and

Couchbase7.

 Graph: This kind of database is designed for data consisting of entities

interconnected with a finite number of relations between them. Social relations,

public transport links, road maps, and network topologies are examples of this

kind of data. OrientDB8, Neo4J9 and Stardog10 are some implementations of

graph-oriented databases.

2.2 BASE Properties

The NoSQL data model does not guarantee ACID properties but instead it guarantees

BASE properties (Basically Available, Soft State, Eventual Consistency) [Singh, 2015].

BASE brings a softer consistency model. Basically Available means the database assure

system availability in terms of CAP theorem. Soft State establishes that the system state

may change over a period of time even if no input is given. Finally, Eventual

Consistency indicates that the system eventually become consistent with time if system

is not feed with any input during that time. These kinds of databases prioritize

availability over consistency [Nayak et. al, 2013][Singh, 2015].

2.2.1 The CAP Theorem

The CAP theorem states that it is impossible for a distributed computer system to

simultaneously provide all three of the following guarantees [Gilbert and Lynch, 2002]:

 Consistency - All the servers in the system will have the same data so anyone

using the system will get the same copy regardless of which server answers their

request.

 Availability - The system will always respond to a request (even if it's not the

latest data or consistent across the system or just a message saying the system

isn't working).

 Partition Tolerance - The system continues to operate as a whole even if

individual servers fail or can't be reached.

It is theoretically impossible to have all 3 requirements met, so a combination of 2 must

be chosen and this is usually the deciding factor in what technology is used.

3 Experiment Design

The experiment design of this work belongs to the observational category. An

experiment of this kind collects relevant data as a project develops, with relatively little

control over the development process. Specifically, this paper adopts a project

monitoring approach, collecting and storing the data that occurs through project

6 https://www.mongodb.com/es
7 https://www.couchbase.com/
8 http://orientdb.com
9 https://neo4j.com/
10 http://stardog.com/

development. It is a passive model since the data will be whatever the project generates

with no attempt to influence or redirect the development process or methods that are

being used [Zelkowitz and Wallace, 1997] [Dinardo, 2008].

3.1 Objectives and Research Questions

The objective of this work is to analyze the challenges related to the process of mi-

grating a relational database to a NoSQL database. The migration is carried out by

people with background knowledge on relational databases but without experience on

NoSQL technologies.

3.2 Context, Experimental Units and Treatment

The experiment was carried out by a group of 4 Information System Engineering

students, with background knowledge on relational data modeling and databases

technologies. However, they have not previous knowledge on NoSQL databases.

The experiment involved a relational database composed by seven tables implemented

in Oracle MySQL and hosted on a remote Azure Windows Server.

Cassandra (version 2.2.6) was the column-based database used in this experiment-

Cassandra was originally developed by Facebook and open-sourced in 2008 [Chan,

2016]. It can be defined as a “distributed storage system for managing structured data

that is designed to scale to a very large size. It shares many design and implementation

strategies with databases but does not support a full relational data model; instead, it

provides clients with a simple data model that supports dynamic control over data layout

and format”. Twitter, Digg and Rackspace, among others, have adopted Cassandra. It is

important to state that we did not choose Cassandra out of a specific problem that

needed to be solved, but for explicit interest on testing Cassandra’s tools and behavior.

We knew beforehand that working on a simple, reduced context might not show

significant improvement on performance issues. However, we consider appropriate to

set this as a starting point for future similar projects, to get familiarized with this set of

tools, environment and modelling approach. Upcoming iterations intend to add

complexity and volume to this process.

3.1 Tasks and Material

The migration from a relational database to a column-oriented NoSQL database –

Cassandra – was the task performed by means of the following steps.

Our starting point was defining technologies and setting them up for proper use. Two

members of our team currently have a Microsoft Azure’s student pass, so we could

virtualize separately a Windows Server virtual machine (where we installed MySQL)

and an Ubuntu virtual machine (where we installed Cassandra). Both gave us access

through Putty terminal or remote desktop.

We started the whole migration process per se by setting the RDBS: our first task was

conceptual modelling11, and we ended up with the simplest schema: 7 tables, each of

them with at most 10 columns and at most 2 foreign keys, as shown in Figure 1.

11 The column-family drawing style was deliberately modified for organizational purposes.

Figure 1. MySQL tables diagram.

 Next step was populating these tables: for this task, we used random data (randomly

generated but respecting its corresponding types and patterns). At the end of this stage,

we had almost nine thousand rows in general, the most populated table having five

thousand of them. All of them were populated following an import process from CSV

file sources.

Third step would be then running all SQL queries considered important. In this case, we

had to make up a whole set of queries given that we had no explicit problem to resolve,

so we thought of seven queries that, under our consideration, cover all important corners

of SQL behavior. Some of these queries are shown in Table 1.

Table 1. SQL query examples.

Query description SQL query

“Amount of companies per city with

area of expertise ‘IT Management’”

SELECT DISTINCT Ciu.Id_Ciudad, Ciu.Nombre,

COUNT(Empr.IdEmpresa) AS Cantidad, Empr.Rubro

FROM empresa Empr, direccion Dir, ciudad Ciu

WHERE Empr.Rubro = 'IT Management'

 AND Empr.Direccion_Fk = Dir.Id_Direccion

 AND Dir.Ciudad_Fk = Ciu.Id_Ciudad

GROUP BY Ciu.Id_Ciudad

“All employees who live in Argentina” SELECT *

FROM empleado emp, direccion dir, ciudad ciu, provincia prov, pais

WHERE emp.Direccion_Fk = dir.Id_Direccion

 AND dir.Ciudad_Fk = ciu.Id_Ciudad

 AND ciu.Provincia_Fk = prov.Id_Provincia

 AND prov.Pais_Fk = pais.Id_Pais

 AND pais.Nombre = 'Argentina'

“Show all countries where the sum of

all of its employees’ salaries is lower

SELECT pais.Id_Pais, pais.Nombre, SUM(trab.Sueldo)

FROM empleado empl, pais, ciudad ciu, provincia prov, direccion

than $5.000.000” dir, trabajo trab

WHERE pais.Id_Pais = prov.Pais_Fk

 AND prov.Id_Provincia = ciu.Provincia_Fk

 AND ciu.Id_Ciudad = dir.Ciudad_Fk

 AND dir.Id_Direccion = empl.Direccion_Fk

 AND empl.Trabajo_Fk = trab.Id_Trabajo

 AND SUM(trab.Sueldo) < 5000000

GROUP BY pais.Id_Pais

“Amount of employees per company” SELECT empr.IdEmpresa, empr.Nombre,

COUNT(emp.IdEmpleado)

FROM empresa empr, empleado emp, trabajo trab

WHERE empr.IdEmpresa = trab.Empresa_Fk

 AND emp.Trabajo_Fk = trab.Id_Trabajo

GROUP BY empr.IdEmpresa

Up to this point, with relational MySQL created, running and tested it was mandatory to

switch our focus to NoSQL Cassandra database. Differing from its root, it was

immediate to us that a re-modelling process was necessary – mostly based on the facts

that Cassandra claims to have cheaper “writes” than “reads”, and its column families

strongly based on the type of queries performed. Hence, the importance of having the

queries previously defined.

The next step involved creating a keyspace (Simple Strategy and factor replication equal

to one – to be noticed here the simplicity we chose for this project), and several column

families (also known as tables) with, notably, redundant information – which is one of

the key uses of Cassandra and column-oriented databases.

Figure 2. Some of the query-based Column Families in Cassandra12.

Following the creation of the column families we had to populate them. For this task,

we used all CSV files exported from the SQL queries run on MySQL previously.

12 The column-family drawing style was deliberately modified for organizational purposes.

Therefore, we made use of the COPY FROM command in order to import data to

Cassandra.

Finally, the last step was to run the same type of queries we ran on MySQL (shown in

Table 2), adjusted to fit CQL (Cassandra Query Language) syntax, and so we could

compare the obtained results to the relational queries as well as both performances.

Table 2. CQL query examples.

Query description CQL query

“Amount of companies per city

with area of expertise ‘IT

Management’”

SELECT *

FROM cant_empresas_por_ciudad

WHERE rubro = ‘IT Management’

“All employees who live in

Argentina”

SELECT *

FROM empleado

WHERE país = ‘Argentina’

“Show all countries where the

sum of all of its employees’

salaries is lower than

$5.000.000”

SELECT *

FROM suma_sueldos_por_pais

WHERE sumasueldos<5000000 ALLOW FILTERING

“Amount of employees per

company”

SELECT idempresa, nombreempresa, COUNT(empleadoid) AS

cantEmpleados

FROM empleado_por_empresa

4 Result Analysis

Even though it was not the main target of this quasi-experiment, we still conducted

some analytical and technical comparisons regarding performance on both databases.

For this task, we included different sets of queries such as:

 Read-mostly query set.

 Read/write combined query set (approximately 50%-50%).

 Mixed query set (read, update, insert).

 Insert-mostly query set.

The reason of testing the former, under our consideration, is that they cover most typical

modern applications quite well. Of course, they were run in a manner that did not allow

data loss.

Being aware we would not find significant performance differences working on a single

node, we still found out (or confirmed what theoretically was supposed to happen)

several topics worth of quotation. Cassandra showed overall improvement, but

remarkably, showed an outstanding throughput in insert-only queries. Regarding read-

only and read/write queries it did not show a massive difference, although it was indeed

better - which is probably due to the de-normalized data and the lack of joins, even

being a write-oriented database competing with a read-oriented RDBS. Finally, to be

noticed that mixed queries (reads & updates & inserts) showed better performance in

CQL than those of read & write. We suspect at this point that the decreasing number of

reads boosts Cassandra’s overall performance.

5 Conclusions

As data-centric systems evolve, organizations increasingly find the need to evaluate new

data stores to support changing applications and business requirements. The media hype

around NoSQL databases and the commensurate lack of clarity in the market makes

important for organizations to access to different implementations. In this paper, a

quasi-experiment on migrating from relational to NoSQL database was presented. As

we concluded it, we found ourselves having achieved our initial goals. Beyond the

migration process our focus was elsewhere; above anything else, we wanted to have a

first go into the NoSQL database world.

As we progressed, step by step, on the resolution of the proposed scenario, we took full

consciousness of its deficits - given the fact we initially took off from a fictional

problem. And that was because we started from scratch, with our minds already set to

think following the relational paradigm.

The biggest problem we had found and the best experience we gained is that when one

wants to use this kind of databases, it is mandatory to know, that the way of thinking

must be changed and the database-structure must be modeled thinking on the application

that supports and not thinking like the traditional SQL way. The tables must be created

thinking on the queries needed by the application: the model it is not application-

independent.

It’s for this reason that we’d found ourselves making a lot of mistakes, struggling to

implement some technologies and needing to learn a little bit more about other

underlying concepts. These, in our opinion, are the most valuable lessons learnt: beyond

every improvable aspect and without exploding all Cassandra's advantages, we could

take a glance at these technologies - and get to know what they are and aren't capable of.

As a first dive and considering the initial conditions, we can call this test a success in

terms of learning. We are now ready to retry this process, with a more accurate, real-

world related, bigger problem, and adding other complex technologies. The starting

point will be then further ahead.

References

Chan, E. (2016). “Apache Cassandra for analytics: A performance and storage analysis”.

Available on: https://www.oreilly.com/ideas/apache-cassandra-for-analytics-a-

performance-and-storage-analysis.

Chen, C. L., and Chun, Y. Z. (2014). "Data-Intensive Applications, Challenges,

Techniques and Technologies: A Survey on Big Data." Information Sciences. 2014.

Dinardo, J. (2008). "Natural experiments and quasi-natural experiments", The New

Palgrave Dictionary of Economics (second edition). ISBN 978-0-333-78676-5.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-333-78676-5

Han, J., Haihong, E., Le, G., Du, J. (2011) Survey on NoSQL database. In: 6th

International Conference on Pervasive Computing and Applications (ICPCA), 2011,

pages. 363–366.

Gilbert, S. and Lynch, N. (2002) “Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant web services”, ACM SIGACT News, Volume 33 Issue 2,

pg. 51-59.

Leavitt, N. (2010). "Will NoSQL Databases Live Up to Their Promise?" (PDF). IEEE

Computer. Available on: http://www.leavcom.com/pdf/NoSQL.pdf.

Martínez, F. and Aizemberg, A. Bases de datos de grafos con manejo de datos

espaciales. Un análisis comparativo. In: Proc. AGRANDA 2015, 1º Simposio

Argentino de Grandes Datos.

Nayak, A.; Poriya, A.; Poojary, D. (2013) Type of NOSQL Databases and its

Comparison with Relational Databases. International Journal of Applied Information

Systems (IJAIS). ISSN: 2249-0868 Foundation of Computer Science FCS, New

York, USA. Volume 5. No.4, March 2013.

Singh, K. (2015). Survey of NoSQL Database Engines for Big Data. Master Thesis.

Aalto University. School of Science.

Zelkowitz, M. V., & Wallace, D. (1997). Experimental validation in software

engineering. Information and Software Technology, 39(11), 735-743.

http://dl.acm.org/citation.cfm?id=564601&CFID=609557487&CFTOKEN=15997970
http://dl.acm.org/citation.cfm?id=564601&CFID=609557487&CFTOKEN=15997970

