

Formal specification and modeling of a project-oriented

fractal company using situation calculus

Mercedes Canvesio
1
, Ernesto Martinez

2

1
CIDISI-UTN, Lavaisse 610, Santa Fe 3000, Argentina

2INGAR (CONICET-UTN), Avellaneda 3657, Santa Fe, S3002 GJC, Argentina

mcanaves@frsf.utn.edu.ar ecmarti@conicet-santafe.gob.ar

Abstract. In response to global competition, small and medium enterprises

(SMEs) can gain a competitive edge from virtual networking. New

information and communication technology further extended these

opportunities but also raise organizational challenges. For SMEs

integration to be fully realized, an information/management system

describing roles, functions, tasks, objectives, goals of all actors and

resources involved is required for enterprise networking as a whole. A

novel approach to formal modeling of a fractal management system for an

integrated enterprise using projects is proposed. As a guideline in

information system design, an axiomatic, representation of the dynamics of

the project-oriented fractal company is given using situation calculus. A

prototype of the ProFCo architecture using the Enterprise Project

Management Solution of Microsoft Project 2007 will be presented

1. Introduction

Intense competition in the manufacturing and service sectors due to globalization,

product customization, variations in demand patterns and rapid technological

development demands new enterprise models. To survive, companies must increase

product portfolio, reduce time-to-market, shorten product-life cycles and at the same

time maintain good product quality and reduce investment cost. Competitive threats are

much worse for small and medium enterprises (SMEs) which are reengineering their

production and management systems to compete successfully. SMEs have to organize

themselves in effective production networks to achieve a higher degree of flexibility,

agility and low costs to cope with the increasing rate of change and complexity of a

highly competitive environment. To address competitive threats and concentrate on their

core competences and strengths networking is the alternative of choice for each

individual SME survival and prosperity [Canavesio et al, 2007; Basole et al, 2011].

Objectives of a SMEs network include increased agility in responding to competitive

threats, a more comprehensive pool of skills and resources, economy of scale and

product portfolio diversification.

To grasp all the benefits of virtual enterprise networking is mandatory to define an

integrated company model to influence by design the behavior of each SME and

relationships thereof. To solve this problem, [Canavesio et al, 2007] proposed an

mailto:mcanaves@frsf.utn.edu.ar
mailto:ecmarti@conicet-santafe.gob.ar

integrated company model revolving around the concept of a project-oriented fractal

company for SMEs networking. In this model, the fractal management unit is modeled

as a project. Each project is seen as an autonomous, temporary entity within the

enterprise network, in which different types of expertise are combined to achieve a

concrete goal (e.g., in product development, satisfying resource usages as scheduled,

etc.). The underlying idea in the project-based fractal company is establishing client-

server (temporal) relationships between project and resource managers in an open

market economy.

This work presents a formal model of the project-based fractal company for SMEs

networking. Situation calculus is used to represent the plethora of relationships

involving roles, actors, goals, projects, resources, etc, at different levels of abstraction

over time. The formal enterprise model is a set of axioms which provides the detailed

specification of the evolution of situations in the project-oriented management system

resulting from actions taken by actors and events allows answering queries for what,

who, when, where and how related to project, tasks and resources involved in client-

server relationships. The set of axioms is expressed in ECLiPSe Prolog for reasoning

and making inferences about the situation dynamics. In the last section of this paper, a

prototype of the project-oriented fractal management model using the Enterprise Project

Management Solution of Microsoft Project 2007 will be presented.

2. Project-based fractal enterprise model

The fractal company [Warnecke, 1993] is a conceptual enterprise model that aims to

achieve a high degree of flexibility to react and adapt quickly to environmental changes

using decentralized and autonomous organizational units known as fractals. A fractal is

defined as a structure that describes an identical pattern that replicates itself at different

abstraction levels in a recursive way. In the project-based fractal company, a fractal

management unit is modeled as a project [Canavesio et al, 2007]. Thus, each project

fractal is seen as an autonomous, self-optimizing, self-learning and goal-driven entity, in

which different types of expertise are combined to achieve a concrete goal or deliverable

(e.g. completing an order, discovery of a new drug for cancer treatment, introducing a

new product, satisfying resource usages as scheduled, etc.). A fractal approach is used

in order to allow enterprises to be able to self-adjust to the changes in the environment

[Canavesio et al, 2007; Ramanathan, 2005; Kirikova, 2009; Bider et al, 2012]. Using

projects at all abstraction levels is both a generator of efficiency and absorber of

complexity to embed a highly adaptive and responsive organizational design that can

balance each project internal complexity with environmental pressures on both the short-

and long-term horizons. The other advantage of the proposed recursive structure is that

naturally lends decentralized decision making [Canavesio et al, 2007].

This management fractal unit is made up of a project-manager and a managed object

(Fig.1). Each project-fractal unit is an autonomic unit which the project manager agent

implements the monitor-analyze-plan-execute (MAPE) loop [Kephart et al, 2003]. Thus,

the project manager is able to: i) sense the present situation of the fractal unit, ii) monitor

the managed object and its external environment in order to construct and execute plans

based on an analysis of available information iii) learn to act based on experience and

evaluative feedback of actions taken, and, iv) interact with other project managers. The

project-based fractal model separates the management of goals from the management of

the resources needed to obtain such goals but in both cases the fractal management unit

is conceived as a project. Thus, the managed object may be either an ends or a means in

the fractal company system. Furthermore, learning allows the accumulation of

knowledge based on the actions executed by other project managers.

Figure 1. Internal Structure of a project-fractal management unit

In each project, depending on the type of managed object (ends or means), its project

manager plays the ends manager role or the means manager role, respectively. Project

managers interact and communicate through client-server relationships established

among them. In each relationship, the ends-manager is the consumer or client for a given

resource and the means-manager is the supplier or server of the concerned resource.

These relationships are established by free negotiation among selfish actors in the fractal

company that are interested in contributing to achieve business goals and deliverables.

3. Formal Enterprise Modeling

Fox and Gruninger (1998) define an enterprise model as an abstraction that identifies and

represents the basic elements that describe an enterprise (structure, process, information

flow, resources, goals and relationships). The main roles of an enterprise model are: i) to

achieve model-driven enterprise analysis, design, and operation; ii) to improve the

efficiency and the effectiveness of the company; iii) to allow exploring alternative models

in the design of enterprises spanning the organization structure and behavior, iv) to

document the operational and predefined processes of the company. An integrated

enterprise model is a representation that describes the main structures and relationships,

information flows, roles, goals, resources, behavior of actors and constraints within an

enterprise network as a whole [Canavesio et al, 2007]. This representation gives the

members of each enterprise the ability to make decisions on how to design the various

business processes [Hoverstadt, 2009]. More specifically, [Koubaraskis et al, 2002;

Bork, 2014] define a formal enterprise model as an abstraction that describes and

represents rigorously and accurately the main elements that describe an enterprise. Thus,

the formalization can capture both structural and dynamic aspects of an integrated

enterprise model and add more advantages such as: stating the requirements for a

detailed design of integrated information and management system for distributed

decision-making and actions coordination. Also, a formal model allows the execution of

simulations to describe and analyze enterprise network dynamics and constraints.

Moreover, model formalization helps defining the semantics of actor interactions in a

precise way and without ambiguities as a mechanism. Finally, formal model makes room

for representing incomplete knowledge and uncertainty about actor policies in an

unambiguous way. Thus, formal integrated enterprise model can be validated and

checked for rigor and robustness [Chapurlat et al, 2006; Chapurlat et al, 2008;Jonker et

al, 2007].

The formalization of an integrated enterprise model incorporates axioms and reasoning

rules allowing modeler to obtain a deductive enterprise model able to answer

commonsense queries [Fox et al, 1998; Mueller, 2006]. Commonsense queries require

that the information systems be able to deduce answers to questions that one would

normally assume can be answered if one has a commonsense understanding of an

integrated enterprise, such as: What is the actor X doing? Who is doing the activity Y?

When, Where, How and Why is the activity Y done? Thus, a formal enterprise model

makes possible to test how complete and correct is the design of the fractal company

information systems as far as its capacity to reply to queries associated with the fractal

company management allowing tracing of project life cycle, manager decisions,

evaluative feedback of actions taken, etc. For all that, it is necessary to translate the

formal and deductive enterprise model into an executable enterprise model where all

actor decision-making policies and interactions are implemented using some logical

programming language. In order to formalize the enterprise model of a project-based

fractal enterprise the situation calculus language will be used. For related work in this

regard, see [Koubaraskis et al 2002; Jonker et al, 2007].

3.1. Situation Calculus

The situation calculus [Reiter, 2003] is a logical language for representing the dynamics

of a “world” of objects. Situation calculus perceives the world as being comprised of a

sequence of situations, each of which is a snapshot of the state of the world. Situations

are generated from previous situations by actions performed by actors (Fig. 2). These

actions may be ordinary or knowledge-producing actions [Reiter, 2003; Scherl et al,

2003]. Ordinary actions cause changes on an actor environment, for example,

StartProjectPlanning(p), EndExecutionTask(t,pl,p), AllocateResource(r,t,pl,p), whereas

knowledge-producing actions affect the actor knowledge state by performing actions of

sensing or reading over any object in the environment. The effect of knowledge-

producing actions typically satisfies the prerequisite of a later action. For instance, the

senseachievedgoal(pr) action causes that an actor knows that his/her project goal has been

achieved, and then he/she performs an action signaling concerned managers the

completion of that project.

A possible world history is a sequence of actions represented by a first-order term called

situation, and each action is denoted by a function symbol with an arbitrary number of

arguments, for example, CreateInstanceProject(pr,g) could stand for the action of

creating project pr to achieve goal g. The constant S0 is used to denote the initial

situation, the situation in which actions have not occurred yet (Fig. 2(a)). The term

Do(a,s) denotes the successor situation to s that results from the execution of the action

a in situation s. For instance, in the situation S0 (See Fig. 2(a)), the ACC209 project

receives approval to send to the market the new drug. Thus, its manager decides to close

it and thus a new situation is created and depicted by Fig. 2(b). Formally, the new

situation S1 is denoted by the term Do(FinishProject (ACC209),S0).

In the situation calculus, the world dynamics is represented by relations and functions

whose values may differ from one situation to another and they are called relational and

functional fluents, respectively. They are denoted by predicates or functional symbols

having a situation term as their last argument. For instance,

ProjectOnSchedule(ACC209,S0) is a relational fluent that returns the true value in S0

and expresses that in S0 the ACC209 project is in progress and on schedule (Fig. 2(a)).

ProjectProgress(ACC209,S0) is a functional fluent that will return the value 98 in the

situation S0. It expresses that in S0 the ACC209 project has progressed 98%.

An action is specified by conditions stating when it can be performed. The precondition

axiom form is Poss(a(x),s)  a(x,s) where a(x,s) is a formula specifying the

preconditions for action a(x). For example, it is possible to finish a project p in the

situation s if and only if the project p has been executed as it was planned and the project

goal g has been achieved in s. Formally, the precondition axiom for the action

FinishProject(p) might be:

Poss(FinishProject(p),s)  ProjectOnSchedule(p,s)  AchievedGoal(g,p,s)

Then, it is necessary to specify what has changed in the world after performing some

action with effect axioms. But these axioms are not sufficient to reason about changes in

the modeled world. It is usually necessary to add axioms that specify when fluents

remain unchanged by actions. These axioms are called frame axioms. The frame

problem arises because the number of these frame axioms is very large, in general, of the

order of 2 times # actions times #fluents. The solution of the frame problem was

presented by [Reiter, 2001] who defined a successor state axiom for each fluent,

relational or functional. Thus, successor axioms specify how actions change the value of

a fluent. For example, in a situation denoted by Do(a,s), the relational fluent

ProjectOnSchedule(p,do(a,s)) will be true if and only if either an action that start project

p is performed or project p is in progress and an action that finishes or interrupts project

p does not occur in s. Formally, the successor axiom for this fluent is:

ProjectOnSchedule(p,do(a,s))  a = StartProject(p)  ProjectOnSchedule(p,s)  (a ≠

FinishProject(p)  a ≠ StartNoFeasibleProject (p))

 (a) (b)

Figure 2. Sequence of situations

3.2. Formal modeling of a project-based fractal company

In a fractal company model, actor actions correspond to some project manager playing

its role (e.g., to create a project instance, to start/end project planning). Then, an action

sequence involving both ordinary and knowledge-producing actions that were executed

by different project managers affect the dynamics of the project-based fractal company.

Thus, the dynamics of situations is represented by changes in the state of managed

objects (projects and resources) and client-server relationships over time [Canavesio et

al, 2007]. With this formal representation, a project manager may know the state of a

managed object at any time and at different levels of details. In order to answer different

types of queries, an ordered sequence of actions is applied from a given initial situation

to the current situation using precondition axioms and successor state axioms defined in

the formal model of the fractal company.

Thus, a formal model of the project-based fractal company is a comprehensive set of

axioms that describe how situations change as a response to actions taken by project

managers. Knowledge base representation and changes is done through four different

types of axioms:

 Precondition axioms for each possible ordinary and knowledge-producing action

that can be executed by a project manager (Table 1).

 Successor state axioms for each fluent which describe the situation of the fractal

company at a given time. These fluents represent object management states,

properties, and relationships between actors (Table 2).

 Axioms that describe predicates independent of a situation. For example,

Company(C), Resource(R).

 Axioms describing the initial situation of the fractal company.

 Unique names axioms for the primitive actions.

 Foundational axioms of the situation calculus (for details, see [Reiter, 2001]).

Table 1. Examples of precondition of project actions

Action Preconditions

CreateInstanceProject(pr,g) (g). Goal(g,s)  CreatedInstanceProject(pr,s) 

(pr*).Project(pr*,g,s)

StartPlanningProject (pr) CreatedInstanceProject(pr,s)  CreatingPlan(p,pr,s)

EndPlanningProject(pr) PlanningProject(pr,s)  CreatedPlan(p,pr,s)

StartProjectProgress(pr) PlannedProject(pr,s)  ProjectPlanOnSchedule(p,pr,s)

StartNoFeasibleProject(pr) ProjectOnSchedule(pr,s)  NoFeasiblePlan(p,pr,s) 

[FinishedPlan(p,pr,s)  AchievedGoal(pr,g,s)]

ResumeProjectProgress (pr) NoFeasibleProject(pr,s)  (pl*)CreatePlan(pl*,pr,s)

AbortProject(pr) NoFeasibleProject(pr,s)  (pl*)CreatePlan(pl*,pr,s) 

ClosedProject(pr,s)

FinishProject(pr) ProjectOnSchedule(pr,s)  FinishedProjectPlan(pl,pr,s) 

AchievedGoal(pr,g,s)  AbortedProject(pr,s)

Table 2. Examples of successor state for relational fluents

Relational Fluents Sucesor states for relational fluents

CreatedInstanceProject(pr, do(a,s)) a = CreateIntanceProject(pr,g) 

CreatedInstanceProject(pr,s)  a ≠

StartPlanningProject(pr)

PlanningProject(pr,do(a,s)) a = StartPlanningProject(pr)  PlanningProject(pr,s)

 a ≠ EndPlanningProject(pr)

PlannedProject(pr,do(a,s)) a = EndPlanningProject(pr)  PlannedProject(pr,s)

 a ≠ StartProjectProgress(pr)

ProjectOnSchedule(pr,do(a,s)) a = StartProjectProgress(pr) 

ProjectOnSchedule(pr,s)  a ≠ FinishProject(pr)  a

≠ StartNoFeasibleProject(pr)

NoFeasibleProject(pr,do(a,s)) a = StartNoFeasibleProject(pr) 

NoFeasibleProject(pr,s)  a ≠

ResumeProjectProgress(pr)  a ≠ AbortProject(pr)

AbortedProject(pr,do(a,s)) a = AbortProject(pr)  AbortedProject(pr,s))  a ≠

FinishProject(pr)

ClosedProject(pr,do(a,s)) a = FinishProject(pr)

This set of axioms that defines the knowledge-base of the project-based fractal company

was implemented using ECLiPSe Prolog [Niederlinski, 2013]. Thus, this executable

enterprise model allows querying about situation of the fractal company.

Like an illustrative example, Fig. 3 shows Prolog clauses that translate precondition and

successor state axioms of the formal enterprise model.

The usefulness of a formal enterprise model is determined by the abstraction level and

type of commonsense queries that are able to answer. Thus, a formal enterprise model

will be complete if it is possible to respond a set of competency questions [Fox et al,

1998]

%Successor State Axioms

createdInstanceProject(Pr, Do(A,S)):- A = createIntanceProject(Pr,G),

createdInstanceProject(Pr,S), not A = startPlanningProject(Pr).

planningProject(Pr,Do(A,S)):-A = startPlanningProject(Pr),

planningProject(Pr,S), not A = endPlanningProject(Pr).

plannedProject(Pr,Do(A,S)):- A = endPlanningProject(Pr),

plannedProject(Pr,s), not A = startProjectProgress(Pr).

projectOnSchedule(Pr,Do(A,S)):- A = StartProjectProgress(Pr),

projectOnSchedule(Pr,S), not A = finishProject(Pr), not A =

startNoFeasibleProject(Pr).

noFeasibleProject(Pr,Do(A,S)):- A = StartNoFeasibleProject(Pr);

noFeasibleProject(Pr,S)  not A = resumeProjectProgress(Pr), not A =
abortProject(Pr).

abortedProject(Pr,Do(A,S)):- A = abortProject(Pr); abortedProject(Pr,S)),

not A = finishProject(Pr).

closedProject(Pr,Do(A,S)):- A = finishProject(Pr).

%Precondition axioms

poss(createdInstanceProject(Pr,G),S) :- goal(G,S), not

createdInstanceProject(Pr,S),not project(Pr*,G,S).

poss(startPlanningProject (Pr),S) :- createdInstanceProject(Pr,S),

creatingPlan(Pl,Pr,S).

poss(endPlanningProject(Pr),S) :- planningProject(Pr,S),

CreatedPlan(p,pr,s).

poss(startProjectProgress(Pr),S) :- plannedProject(Pr,S),

projectPlanOnSchedule(Pl,Pr,S).

poss(startNoFeasibleProject(Pr),S) :- projectOnSchedule(Pr,S),

noFeasiblePlan(Pl,Pr,S);finishedPlan(Pl,Pr,S), not

achievedGoal(Pr,G,S).

poss(resumeProjectProgress (Pr),S) :-

noFeasibleProject(Pr,S),createPlan(Pl*,Pr,S).

poss(abortProject(Pr),S) :- noFeasibleProject(Pr,S), not

createPlan(Pl*,Pr,S); closedProject(Pr,S).

poss(finishProject(Pr),S) :- projectOnSchedule(Pr,S),

finishedProjectPlan(Pl,Pr,S), achievedGoal(Pr,G,S);

abortedProject(Pr,S).

%Initial situation

closedProject(AC2990,s0). projectOnSchedule(sbb-1,s0).

taskOnSchedule(t4,pl1,sbb-1,s0). taskProgress(t11,pl3,sbb-1,80,s0).

taskResourceConsumption(t11,pl3,sbb-1,98,s0).

Figure 3. . An extract of the knowledge base implemented using ECLiPSe

Prolog

from the knowledge represented in it. Accordingly, the competency questions define the

scope and objectives of the enterprise model while allowing its validation and

correctness. In order to assess the fractal company model utility, the executable

enterprise model must be instantiated for a particular enterprise network, in this case a

fractal company dedicated to the discovery and development of new drugs.

The executable model of the fractal company allows answering to factual queries, such as

“who is the SBB-1 project manager in the initial situation?” or “Is the ETC3-126 project

in progress in the initial situation?” whose answers are obtained from the very

information represented explicitly in the model itself, but also can infer answers for

queries referred to the situation dynamics of the fractal company. The following

paragraphs present some examples of commonsense queries about a project-based fractal

company situation.

Query example 1: A project manager may need to know its project state in the current

situation. This would be expressed as

ProjectState(SBB-1,State,result(createInstanceProject(ax29), result(startNoFeasibleProject(SBB-

1,result(startOutOfScheduleTask(t4,pl1,sbb-1),s0)))).

The result is shown by Figure 4(a).

(a)

(b)

Figure 4. The knowledge base shows (a) the SBB-1 project state and (b) the

task state of the SBB-1 project

In relation to the previous answers from the knowledge base, the project manager could

require to know what is the cause making its project non feasible. This is expressed as
ProjectPlanTaskState(SBB-1,pl1,result(createInstanceProject(AX29),

result(startNoFeasibleProject(SBB-1,result(startOutOfScheduleTask(t4,pl1,SBB-1),s0)))).

Fig. 4 (b) shows the answer to this query. As it is highlighted in this figure, task 4 “to

produce batches of compound SBB-1 to carry out the clinical trials” is behind the

original schedule which makes the project non feasible. This abnormal situation has the

following explanation. The clinical trials of SBB-1 are being very successful. As a result,

the demand for more batches of the SBB-1 compound used in clinical trials is increasing,

but pilot plant production cannot respond fast enough and delays arise in ramp-up

production.

Query example 2: A project manager may need to know, for a given task, which are the

task progress and the percentage of resource consumptions regarding planned usage in

the current situation. This would be expressed as:

TaskProgressVsResourceConsumption(t11,pl3,sbb-1,%Progress,%Resource,

result(createInstanceProject(AX29),result(startNoFeasibleProject(SBB-1,

result(startOutOfScheduleTask(t4,pl1,SBB-1),s0)))).

The result of this query is shown by Fig. 5.

Figure 5. The knowledge base shows the task progress and the resource

consumption percentages in a given situation

Query example 3: A resource manager needs to know for a given resource which

resource commitments are not going to be fulfilled during a time period. This may be due

to a fault causing a resource is out of service due to an unplanned maintenance service in

the current situation. This query is expressed as follow:

AffectedCommitments(resourceTX,AffectedProject,ProjectManager,From,Since,AffectationLevel,result(

createInstanceProject(AX29),result(startNoFeasibleProject(SBB-1,

result(startOutOfScheduleTask(t4,pl1,SBB-1),s0)))).

The answer from the knowledge base is that there exist two affected commitments

(tasks) by the current resource situation.

4. The ProFCo Architecture

The ProFCo (Project-Based Fractal Company) architecture is proposed for designing

information systems to implement the project-based fractal company model. This

architecture considers all requirements defined by the integrated enterprise model in

Section 2. ProFCo is made up of a server module (ProFCo Server) and several client

modules (ProFCo Clients) which communicate over the internet (Fig.6).

The ProFCo Server is a public module and responsible for:

 Registering integrated companies of the fractal company and the actors who will

play the ends or means roles.

 Administering user names, password and restrictions of user access.

 Registering a file of client-server relationships established between project

managers.

 Publishing information on project manager performance.

 Storing project data views that are acceded via Internet only by those users who

have the corresponding permissions (father project, client project, member of the

project). Thus, these users will be able to observe the progress of a given project,

allocations of tasks and resources, consumptions of resources, costs, also to

analyze the risks, to report progresses and abnormal situations.

 Storing in the catalog of the resources of the fractal company and to display

complete information about them, with the aim of making agile the search and the

contacts for the provision of them.

 An e-mail server that allows of the negotiation and communication among project

managers and also it allows sending of messages about allocation of tasks,

progresses, warnings, reminders.

Figure 6. The ProFCo Architecture

The ProFCo Client is a private module for each one of the project manager. This

module allows project manager

 to create, publish and manage his/her projects,

 to communicate with other members of the company fractal,

 to browse the resource catalog in the fractal company and thus to negotiate the

provision of them.

In both server and client modules the decisions and actions carried out by project

managers are registered in order to know performance of the project managers and to

control that enterprise model constraints are not violated. For example, a project never

could be published if it does not have a created plan; this is a plan with its defined

attributes and restrictions, and the necessary designation of the people in charge for each

task and resources have already assigned.

A prototype of the ProFCo architecture was implemented using the Microsoft Office

Enterprise Project Management (EPM) SolutionTM1 and Visual NetTM. The project

management tool EPM is a relatively low-cost, easy-to-use, flexible, and powerful

enough for taking advantage of the Web and Intranets. This software tool allows an

individual enterprise to optimize its resources, prioritize its works, align its project

portfolio with overall business objectives and enables effective collaboration. Visual

NetTM was used to create an interface between project actors and project-relevant

1 MS Office Project Professional 2007, MS Office Project Server 2007, MS Project Web Access, MS Office

Outlook 2007, SQL Server and Visual Net are trademarks of Microsoft Corporation.

knowledge and information bases, and thus, tailor EPM SolutionTM to meet specific

project-based fractal company constraints and requirements. Visual NetTM was chosen

to avoid difficulties of compatibility between applications. In the following paragraphs,

the EPM SolutionTM architecture and the ProFCo architecture are presented and a brief

description of each architectural component follows.

The EPM SolutionTM architecture is deployed across three tiers: a client tier, an

application tier, and a database tier (Micro, 2013). Figure 6 shows the architecture of

prototype ProFCo where components of the EPM Solution architecture (those whose

names are not underlined) are included. The client tier includes Project Professional

2007, Project Web Access 2007 and Outlook 2007. Project Professional 2007 is

a desktop application that is designed to enable project managers to create, publish, and

manage projects. In addition to scheduling and tracking tools, it provides project

managers with enterprise resources and portfolio management capabilities. Microsoft

Project Professional can publish information to Microsoft Project Server and update

information from Microsoft Project Server into project plans. Project Web Access

is a web-based client that is designed for users who are not project managers, such as

team members. Project Web Access provides access to timesheets, project views,

status reports, document libraries, and risks. Project Web Access uses Internet

Explorer to access project and resource information on Project Server, view updates

and analyze information about projects and resources. With Outlook users can receive

e-mail reminder notifications for tasks that they are assigned in projects that are stored in

the Project Server database.

The Application tier includes the central component of an EPM Solution: Project

Server 2007. It is a web-based server application that integrates with several client

applications. It provides both workgroup and enterprise project management features to

client applications. When a project manager publishes a project, it is available to other

project managers and project stakeholders.

In an EPM Solution, the Data tier is based on the SQL Server. This tier manages

and stores project-related data consisting of several sets of database tables: The Project

DB is a set of tables with project data that project manager access by using Project

Professional, and the Project View is a set of tables that represent a rationalized view

of each project data that is contained in the project database and they are accessed by

means of Project Web Access.

Also, the prototype of the ProFCo architecture adds new components in each tier in

order to tailor the commercial solution to meet all the project-based fractal company

requirements. To achieve them were necessary to create a new resource perspective that

allows separating resources management and allocation functions from resources

utilization functions and establishing client-server relationships through negotiation

among project managers (Contract module - Client tier - and Negotiation and Contract

module – Application tier-). In addition, project managers have a browser that allows

them to find information about the fractal company resources and to open the

negotiation for the resource allocation with their respective managers (Resource Catalog

module – Application tier-). To this aim, the Resource DB and Client-Server DB

databases were included in the Data tier.

Also, there exist a web-based application that allows enterprises to register actors as

potential project or resource managers, to access, analyze and update information about

actors, roles, and their performance (Project-Manager Registry module – Client tire).

Furthermore, this application is responsible for authenticating usernames, passwords and

access permissions of such actors, being allowed them to carry out queries and

operations only on those projects for which they are qualified (User Administration and

Control module – Application tier -). In order to do this, the Actor DB database that

stores all information about actors and roles are included in the Data tier.

Figure 6 The prototype of the ProFCo Architecture

5. Conclusions

A formal fractal company for inter-firm networking has been proposed. Each project is

an independently acting self-similar unit within the network. The key to the project-

based fractal company is establishing client-server relationships between project

managers that allow a more effective device for collaborating in a competitive

environment. Formal enterprise modeling is based on the formalism of situation calculus.

This formalism allows representing the multiple/relationships among projects, resources,

and actors at different levels of abstraction over time. The set of axioms representing the

SMEs networking dynamics is implemented in the logical programming language

ECLiPSe Prolog. The execution of model simulation allows us to describe and analyze

emergent behaviors and constraints as well as elaborated queries to the fractal company

knowledge base. A prototype of the project-fractal company information system was

developed using the EPM Solution of Microsoft Project 2007. This commercial set of

project management tools was being tailored in order to describe the interactions

between project managers according to the proposed model for enterprise networking.

References

[1] Canavesio, MM Martinez, EC.(2007) Enterprise modeling of a project-oriented

fractal company for SMEs networking. Computers in Industry. Vol 58. Pp 794-813.

[2]Basole, R.C., Rouse,W.B., McGinnis, L.F., Bodner, D.A., Kessler, W.C.(2011)

Models of Complex Enterprise Networks. Journal of Enterprise Transformation. 1:3,

Pp 208-230.

[3] Warnecke, H.J..(1993) The fractal company: a revolution in corporate culture.

Springer-Verlag. Berling.

[4] Ramanathan, J. Fractal architecture for the adaptive complex enterprise. (2005)

Communications of the ACM. Vol 48. No 5. Pp 51-57.

[5] Kirikova, M. Towards flexible information architecture for fractal information

systems.(2009) I International conference on information, process and knowledge

management. IEEE Computer Society.

[6] Bider,I., Perjons, E., Elias, M.. (2012) Untangling the dynamic structure of an

enterprise by applying a fractal appoach to business processes. Proceedings of PoEM

[7] Fox, M., Gruninger, M.. (1998) Enterprise modeling. AI Magazine, AAAI Press,

Pp.109-121.

[8] Hoverstadt,P. (2009). Fractal organization: creating sustainable organizations with

the viable system model. John Wiley & Sons.

[9] Koubarakis, M., and Plexousakis, D.. (2002). A formal framework for business

process modeling and design. Information Systems. Vol. 27 No 5, Pp229-319.

[10] Chapurlat,V., Kamsu-Foguem,B., Prunet,F.(2006) A formal verification framework

and associated tools for enterprise modeling: Application to UEML. Computer in

Industry. No 57.Pp 153-166.

[11] Chapurlat,V., Braesch,C..(2008) Verification, validation, qualification and

certification of enterprise models: statements and opportunities. Computers in

Industry, No 59, Pp.711-721.

[12] Jonker, C.M., Sharpanskykh,A., Treur,J., Yolum,P,.(2007) A Framework for

formal modeling and analysis of organizations. Appl.Intell. No 27. Pp. 49-66..

[13] Mueller,E.T. (2006) Commonsense reasoning. Morgan Kaufmann Publishers.

[14] Reiter, R.. (2001) Knowledge in action. Logical foundations for specifying and

implementing dynamical and implementing. MIT Press. Massachusetts Institute of

Technology.

[15] Scherl, R.B., and Levesque, H.J. (2003) Knowledge, action, and the frame problem.

Artificial Intelligence. No 44, Pp. 1-39.

[16] Niederlinski, A., (2011) A quick and gentle guide to constraint logic programming

via ECLiPSe. Jacek Skalmierski. Computer studio. ISBN 978-83-62652-08-2.

[17] tech.microsoft.com/library. 01/07/2013.

[18] Kephart, J., Chess, D. (2003) The vision of autonomic computing. Computer. Vol

36 No.1. IEEE Computer society. Pp 41-50.

Bork,D., Fill, H. (2014) Formal aspects of enterprise modeling methods: a comparison

framework, 47st Hawaii International Conference on System Sciences. Pp 3400-3409.

