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Abstract. Current research shows the development of a first approximation
algorithm of Denaturing Gradient Gel Electrophoresis (DGGE) band image
identification. The proposed algorithm considered the use of artificial neural
networks based on deformable connectionist models subjected to an evolutio-
nary algorithm.

Resumo. A pesquisa atual mostra o desenvolvimento de um primeiro algoritmo
de aproximação da identificação da imagem da banda da eletroforese de gel
de gradiente desnaturante (DGGE). O algoritmo proposto considerou o uso de
redes neurais artificiais baseadas em modelos de conexão deformáveis subme-
tidos a um algoritmo evolutivo.

1. Introduction
Digital images are two-dimensional representations corresponding to a set of pixels ar-
ranged in a matrix for digital processing. If the representation is in a grayscale, each
pixel is represented by a numerical value from 0 to 255, which illustrates the different
shades of gray ranging from black (0) to white (255). On the other hand, segmenta-
tion [Mao and Jain 1992, Rathod et al. 2010] is an operation that divides an image into
parts or regions with some particular characteristic. Segmentation algorithms are ba-
sed on two fundamental properties that depend on changes in intensity. The first pro-
perty is related to the similarity between pixels whereas the second focuses on the con-
tinuity related to gray levels. The latter approach involves a family of edge detection
algorithms that consider strong intensity that varies between neighboring pixels. The
image type used in this paper was a DGGE (Denaturing Gradient Gel Electrophoresis)
image; this technique is based on DNA and generates a genetic profile which identifies
the members of a microbial community [Muyzer and Smalla 1998, Cebron et al. 2004].
The DNA sample was deposited on a gel to which an electrical current was applied;
DNA molecules were denatured, so that their strands ran on the gel to form an image
with lanes (depending on DNA molecular weight) and bands (depending on the num-
ber of DNA bases). Once the DGGE image was obtained in digital format, the analy-
sis or processing stage began; in the case of some Biotechnology Centers, this task
was carried out with the Quantity-One software tool. However, automatic detection of
these bands by these applications occurs inefficiently and with a significant percentage



error due to imprecise parameters for identifying bands; detection is therefore carried
visually and manually in most cases [Cebron et al. 2004, Prabhakar and Bishop 2014].
Providing an efficient solution to this problem requires automatic segmentation of the
bands present in the DGGE images. A new segmentation methodology was there-
fore used, which has been initially tested as efficient in different images and based
on connectionist models (artificial neural networks, ANNs) for modeling the requi-
red image segmentation [Sierra et al. 2013, Novo et al. 2012]. This methodology im-
plies that ANNs are applied on each image pixel and receive the local ANN infor-
mation in thispixel to determine its segmentation. The same ANN is applied on all
the image pixels, thus acting as a segmentation operator such as Sobel or Canny Ma-
tlab. The iteration along the image and in different temporal iterations provide an emer-
ging image segmentation, thus taking advantage of the generalization property of the
ANNs which can correctly segment entries not considered during their training. The
ANNs are automatically obtained and trained through evolutionary computation methods.
They especially focus on a current method with tested effectiveness and robustness as
differential evolution [Graves and Pedrycz 2009, Salman et al. 2007, Omran et al. 2009,
Noktehdan et al. 2010]. The main objective of this article was to show if it was pos-
sible to obtain automatic DGGE image processing by connectionist models and evo-
lutionary computation. Since this type of processing is necessary for image analysis
in many biotechnology centers for wastewater and drinking water treatment, microbi-
ally induced corrosion analysis, or species biodiversity measurement in a given envi-
ronment [Muyzer and Smalla 1998, Kim et al. 2008, He et al. 2010, Durand et al. 2013]
Therefore, the results obtained in this study provide new image segmentation techniques
and adapts them to the application of DGGE imaging. Section 2 describes the problem in
more detail by highlighting the usefulness of this type of image and the positive impact it
could have in finding solutions in the field of biology. Section 3 is related to the proces-
sing and treatment of DGGE images with some information about connectionist models
and evolutionary algorithms in the image segmentation process. Section 4 describes the
proposed solution while Section 5 gives details about how the proposed solution was de-
veloped, describing the methodology implemented and the algorithms and heuristics used.
Section 6 describes the experiments performed on DGGE images and artificial images to
test and illustrate the efficacy of the solution. Finally, Section 7 presents conclusions and
future work.

2. Description of the Problem
The development of techniques related to the study of DNA provides comprehensive and
rapid knowledge about biodiversity, evolution, and animal and plant genetics. The high
sensitivity of these techniques along with the discovery of regions with a high degree
of variability have led to significant advances in studies of population genetics, bioge-
ography, and polymorphism in human populations; applications have been developed
in forensic medicine, paternity determination, and the diagnosis of hereditary diseases
[Durand et al. 2013]. The main advance is that these techniques are able to directly ac-
cess an individual?s genotype, thus preventing phenotypic expression and environmental
influence [Muyzer and Smalla 1998, Durand et al. 2013]. The basic principle of molecu-
lar marker acquisition and detection by gel electrophoresis involves the electrochemical
separation of molecules. As indicated in the previous section, the DGGE imaging tech-
nique is based on the differential migration of molecules with different size loads when



Figura 1. DGGE image [Nicolaisen and Ramsing 2002]

they are subjected to an electric field (electrophoresis). An example of an electrophoresis
image is shown in Figure 1, The vertical rails are called lanes (each lane is a sample). The
material in the lanes are called bands; they are the positions at which the molecules stop.
The analysis of the electrophoresis results is performed by comparing the paths between
the bands. However, this comparison is usually a complex and tedious process due to
the subjectivity of human visual perception. Therefore, two people visualizing the same
material can reach different conclusions [Muyzer and Smalla 1998].

Researchers from several biotechnology centers in Chile and the world are cur-
rently visually analyzing electrophoresis images and building a similarity matrix. This
matrix is used as input for statistical software such as GENES [Cruz 2013], STATISTICA
[Statsoft 2014], or Quantity-One [Quantity-One 2016] that perform cluster analysis and
data dispersion. Digital electrophoresis image analysis is emerging as an important ap-
plication for reducing human error and improving data evaluation speed [Ye et al. 1999].
The automatic band pattern analysis of a lane could evaluate many parameters that are
generally ignored by human analysts [Machado et al. 1997]. Given that electrophoresis
image analysis is a manual, subjective, and tedious task for researchers, the automated
analysis of such images is interesting because it would reduce human errors, the inter-
pretation process would be faster, and it could even be used to study large databases of
samples. Therefore, a tool that is able to perform an accurate and efficient automated
analysis would be of great value in the field of general biology and genetics because it
could reduce research time and the costs involved.

3. Related Research
Digital image processing methods are applied in two main areas. The first is improving
visual information for human interpretation, and the second is processing image data for
perception through automatic machines [Benoit et al. 2014]. The field of image proces-
sing has steadily grown since the 60s. The same techniques are used to solve a variety
of problems where visual information needs to be improved for analysis and human in-
terpretation. The following are some of the areas that support image processing: space
research, medicine, geography, archeology, physics, astronomy, biology, as well as sup-
porting the law or defense. Some related research studies about DGGE image processing
are described below.

In [Figueroa et al. 2009] defined a technique that starts by extracting lanes and



Figura 2. Normalized histogram. External Source [Figueroa et al. 2009]

then obtains a histogram sum of pixels, which is subjected to the use of morphological
operators and smoothing. After obtaining the smooth curve of the histogram?s sum of pi-
xels normalization occurs, which functions through partial derivatives on minimum points
of each peak present in the histogram. This leads them to the same base or zero level as
shown in Figure 2, where the upper curve corresponds to smoothing whereas the lower
curve corresponds to normalization. This process improves band detection and hence
noise elimination.

The above mentioned process leads to the coloring of the position of each histo-
gram peak in Figure 2; this results in the bands that are labeled in Figure 3 because it is
assumed that each band corresponds to a peak.

Figura 3. Identified and highlighted bands. External Source [Figueroa et al. 2009]

This technique made it possible to perform automatic band detection with 0.20
accuracy error [Figueroa et al. 2009]. However, it was not possible to obtain correct band
segmentation for further quantification because when it was normalized and the noise was
eliminated, useful information for DNA experts was lost, and it was almost impossible to
pinpoint when a band ended and started.

In this second approach [Figueroa 2012], work was related to edge detection algo-
rithms based on ants and proposed by nombrar autor [Dorigo and Di Caro 1999]. In these
algorithms, virtual ants simulate the stigmergy process when they deposit pheromones
that provide information to the others so as to collectively find short paths (optimized) to
food sources. It was possible to adapt this process to optimize band detection to trace the
contour of each ant; this required implementing two algorithms, that is, the Elitist Ant
System and Ant System [Pinninghoff et al. 2012]. The best parameters to find the best
possible results were established in these studies, which provided support for the subse-
quent band quantification stage. Some results obtained after applying these algorithms
are reflected in Figure 4.

Certain bands in Figure 4 were difficult to detect by virtual ants and hence the
resulting segmentation was not successful. Alternative aspects of this work are described



Figura 4. Comparison of the values obtained from the Ant System (b, e, h) and
Elitist Ant System algorithms. External Source [Figueroa 2012]

in other studies [Figueroa 2012, Pinninghoff et al. 2012]. Some research studies can be
highlighted that are related to DGGE image treatment; one study describes some methods
to improve the quality of DGGE image presentation with respect to band appearance using
pure genetic algorithms and genetic algorithms with tabu search [Pinninghoff et al. 2014].
Other studies only correct how the lanes and bands appear as described by nombrar autor
[Gárate et al. 2011]. However, these authors only used RAPD images to evaluate how
the technique performs and combined the genetic algorithm technique with tabu search
and thresholding. On the other hand, the image segmentation is on of the main areas in
automatic image processing. This process is responsible for subdividing an image into
its constituent parts or objects; for example, the separation of the objects from the back-
ground. Thus, image segmentation is usually the first step in performing the analysis
[Ademek 2006]. Automatic image segmentation is usually one of the most difficult tasks
in image processing [González and Gasull Llampallas 2008] and [Zeng 1999]. This step
determines the success or failure of the analysis; when it is effectively carried out, suc-
cess is almost guaranteed. To perform robust automatic segmentation and given image
brightness variations, many algorithms are based on selecting cutoff values in terms of
grayscales in the image, which is usually done by analyzing the histogram [Otsu 1979].
Approaches for segmenting monochromatic images are generally based on two basic pro-
perties of grayscale values: discontinuity and similarity. In the first category, methods are
aimed at dividing the image based on abrupt changes in grayscales, offering image lines
and edges. In the second category, methods try to group the image pixels that have similar
values for a specific set of characteristics. Likewise, nombrar los autorespropose a new te-
chnique that involves neural networks and a deformable model (Topological Active Nets,
TAN) [Sierra et al. 2013, Tsumiyama and Yamamoto 1989], an extension of the classic
snake model [Kass et al. 1988]. The TAN model integrates characteristics of the two des-
cribed segmentation techniques by providing information about the image contours (by
external mesh or networknodes) and internal characteristics of the image (by internal no-
des, see Figure 5). The deformation over time of the TAN nodes is defined by an artificial
neural network (ANN), which learns to move each node of the segmentation model by
using local image information in the position of each node. The ANN is applied to each
of the nodes in different time intervals up to the final segmentation as shown in Figure



5. Therefore, this type of model has a dynamic behavior that allows precise adjustments
on local topological changes to find all the objects of interest in the image. The defor-
mation of the model or mesh is controlled by energy functions such that the energy mesh
(TAN) has a minimum value when the model correctly segments the objects of the scene.
Thus, the segmentation process is converted into a minimization task and ANN receives
the energy changes as information; these occur when each node of the mesh is moved
(which in turn is local image information in the node position). This proposal was tested
in different artificial and real images, which showed the abilities and advantages of this
type of methodology. An example is illustrated in Figure 5 where the TAN was initi-
ally established within the limits of the image and all nodes were moved until the correct
segmentation was achieved [Sierra et al. 2013, Novo et al. 2011].

Figura 5. Emerging segmentation provided by TAN (Topological Active Net). Ex-
ternal Source [Novo et al. 2011]

Therefore, the main objective of this article was to obtain automatic processing of
these images, which was necessary for their subsequent analysis by connectionist models
and evolutionary computation; accuracy was thus increased in band detection.

4. Proposed Solution
As previously defined, the purpose of this article was to obtain automatic processing in
the detection and identification of DGGE image bands. An ANN was used to define an
emerging segmentation over time, deformable models, and evolutionary computation. By
adapting the methodology to DGGE images and our main objective, the ANN input was
the pixel neighborhood around the pixel to which the ANN was applied while the output
indicated a grayscale (trying to indicate which pixels had gradient transitions). The same
ANN was applied to all pixels in various iterations, so that an emerging segmentation
was once more obtained by defining the band contours. The ANN defining the segmen-
tation was obtained automatically by an evolutionary method. We proposed differential
evolution [Novo et al. 2011, Storn and Price 1995] because it is a method with proven ro-
bustness in optimizing problems that are encoded in a genotype of real numbers (as in the
present study where the genotype of the individuals of the genetic population defined nu-
merical connection weights between ANN nodes) and with an automatic balance between
exploration and exploitation in the search. Therefore, the ANN behaved as a segmenta-
tion operator, but unlike a classic predetermined segmentation operator (Sobel, Prewitt,
or Kirsch) the ANN was iteratively applied in time and also automatically optimized for
segmenting images. In other words, the search for an appropriate segmentation operator
was automated. In addition, an ANN was obtained in an evolutionary way with an image
or set of images (training set); their generalization could be tested with images (DGGE
or another type) not considered during training/development (validation set) using the
classic validation methodology of connectionist models.



5. Implementation

Specific characteristics of DGGE images convert the band detection process into a dif-
ficult task. Due to the low gradient scale range, a solution based on a deformable mesh
with a unidimensional vertical movement that can return band recognition through an
ANN behavior was proposed. The proposed algorithm is based on image processing
[Sierra et al. 2013]. The algorithm proposed an image segmentation based on TAN for-
med by multiple nodes distributed into a bidimensional space (image) and which were
adjusted to fit the shape of the object being identified after the algorithmic evolution. The
following briefly describes some concepts related to the solution.

i) Differential evolution: classic evolutionary algorithm that consists in subjecting a
population of algorithmic structures to evolution or improvement given a crossing
percentage , mutation, and fitness parameter selection.

ii) Lifetime: Iterations where each structure improves before generational change.
iii) Fitness: In an evolutionary algorithm, this is a value defining an absolute score by

arbitrary parameters of an individual or algorithmic structure that is evolving in order
to compare it with other individuals.

iv) ANN: Artificial neural networks. This consists of neurons or algorithmic structures
working together to achieve a common aim. For the algorithm in the present study,
the ANN corresponds to the deformable mesh.

v) Node: A structure forming the ANN.
vi) Deformable Mesh: An ANN subjected to evolution and selection.

vii) Capture: This was understood as the action of a node or node set established in a
band contour.

viii) Pixel value difference: In a node, this is the absolute value indicating the gradient of
the current pixel vs. the future pixel.

ix) Resistance: In a node, this defines the lower limit of the range of differences;this
range allows moving toward the node only within a limited grayscale. When resis-
tance is lower, the node captures mostly smooth contours whereas the node captures
abrupt contours for higher resistance. Its value is an integer from 0 to 255 (pixel
grayscale value range).

x) Vertical width: In a mesh, this is the length from the row with the highest node to the
row with the lowest node.

xi) Dispersion: This is the maximum length of the vertical width.

5.1. Methodology

The development of the algorithm was focused on the grayscale DGGE images and only
the already segmented lanes were processed in order to simplify testing.The first stage
began by developing image visualization architecture, drawing structures and represen-
ting results (solutions). First, the image matrix and visualization through the screen was
implemented. The drawing functions over the image, coordinates (pixels), and complete
lines and meshes were then developed. In this way, the unit tests were easily performed.
The second stage consisted of implementing the logical structure of the DGGE image
processing algorithm, which first addressed node implementation followed by the mesh
and the evolutionary algorithm (differential evolution). Regarding the node structure,
it was based on a two-dimensional coordinate because it operates over a bidimensional



image; a direction variable was also incorporated and measured in degrees. It was there-
fore possible to test node behavior. Node movement was implemented over the image by
considering that it could not pass the margins or be located on its other nodes. Four states
were also defined for the node; these are described in detail in the following sections. The
mesh was the second structure that was created. This structure has a header referring to
neighboring nodes from the same mesh. Every node belonging to the mesh has the same
resistance and direction. The fitness function was defined according to the node states
and a function to calculate its maximum vertical width (dispersion) in order to report its
range to the other meshes. Finally, the differential evolution algorithmic structure was
implemented. Its development was not overly difficult but some particular characteristics
for the specific problems were added, which are specified in the following section.

5.1.1. Heuristics

The heuristics used in implementing the solution belong to the present research study.
They were useful to narrow down the size of the problem, especially reducing the diffe-
rential evolution algorithm randomness in mesh insertion and generation.

i) Select the range image differences: For mesh insertion into the image, the vertical
minimum and maximum between pixels were calculated. In this way, node resistance
was calculated as a value within the described range.

ii) Ignore occupied mesh positions: In mesh insertion, the positions occupied by the
vertical width of active meshes in the image were ignored.

iii) Eliminate scattered nodes: When the nodes are fixed and highly scattered from the
rest of the nodes in the mesh, they are eliminated.

iv) Insert empty positions by normal distribution: Mesh insertion into the empty image
positions was performed by a normal distribution.

5.1.2. Mesh Generation

Mesh generation produced by the above heuristics is shown in Figure 6 .

Each mesh consisted of a set of nodes that was determined by a horizontal density
parameter, a decimal value within the 0 to 1) range. This corresponded to the percentage
of the horizontal area of the mesh to be occupied by the nodes, and which allowed calcu-
lating their number given the image?s horizontal length. In order to place the nodes within
the horizontal range, its number was calculated and then equidistantly inserted from left
to right.

Each netmesh at the time of insertion was randomly assigned a direction, allowing
to it to move either 90ı̈¿1

2
(up) or 270ı̈¿1

2
(down). This was the direction of all its nodes. In

addition, each mesh was assigned a resistance that depended on the heuristic range image
differences, and which was assigned to all the nodes.

5.1.3. Adaptation of Differential Evolution to the Problem

Given that each mesh (solution) is positioned in a distinct space within the image, thus
capturing a possible band, crossing characteristics did not provide adequate heuristics. It



Figura 6. Shows the mesh generation process previously described

was therefore necessary to implement the evolutionary algorithm with a subtle difference
in order to process and insert the new mesh generations. The crossing, which combined
the characteristics of the best individuals, was rejected to generate new individuals in the
next generation. This characteristic was replaced by a lifetime in which the mesh attemp-
ted to capture a band contour and improve fitness that is consistent with the adaptation
concept.

5.2. Algorithm Structure and Functioning

The previously described proposal tried to use a connectionist model subjected to evolu-
tion by adapting the differential evolution algorithm to achieve band recognition with an
automated sensitivity. This was achieved by adapting and selecting solutions generated
by the algorithm. When the main structure of the study was introduced, it behaved like
a deformable mesh with unidimensional movement (vertical). It consisted of many guide
nodes, that is, a set of coordinates that share information from their environment to achi-
eve vertical advanced behavior and capture the band contour. The main structures of the
algorithm are described below.

5.2.1. Node

The node represents the basic mesh unit.It simulates an intelligent coordinate (on a given
pixel), which communicates its state to other mesh nodes , and moves vertically depending
on its resistance (see Figure 7).

The node states are:

• FREE (state 0): the node is free and it can continue to move through the image.



• READY (state 1): the node has captured a favorable contour according to its re-
sistance.
• BLOCKED (state -1): the node cannot move because another node is blocking its

advance. This state is not permanent and can return to the FREE state to the extent
that the node that is blocking it advances.
• WASTE (state -2): is rubbish. The node is permanently blocked by another fixed

node, (because the other node can be in the READY state), or has reached the
limits of the image without capturing a contour

Figura 7. Node in a DGGE laned

The behavior of each node is illustrated in Figure 10.

Figura 8. Node behavior diagram

Algorithmic implementation details are also established in the following pseudo-
code:

5.2.2. Deformable Mesh

The structure was an ANN proposal based on a connectionist and deformable model,
a mesh of nodes, which advanced performing vertical scans (90ı̈¿1

2
and 270ı̈¿1

2
) on a



Algorithm 1 Node Behavior
1. Node defines four states:

FREE = 0;
READY =1;
BLOQUED =-1;
WASTE = -2;

2. Calculate grayscale value of future (next adjacent) vertical coordinate, depending
of the node direction.

3. Verify if the value calculated is valid and isn’t other net position
IF future position is invalid or is in other next positin

IF node state is BLOCKED
set node state to WASTE$

ELSE
set node state BLOCKED

ENDIFELSE
ENDIF

4. Verify if the future position is an edge
IF difference between current pixel and future pixel
is greater than resistance

set node state to READY
set the future position to the current position

ENDIF

DGGE image lane. The mesh was a set of nodes arranged horizontally at a uniform dis-
tance. This structure handled information about its vertical width (vertical dispersion of
nodes); although mesh and node insertion occurred on a perfect horizontal line (slope 0),
nodes were dispersed when this behavior was executed as a consequence of the capture
or blocking of some nodes before their peer nodes. This structure managed this infor-
mation so the meshes were not interposed with each other, and a band contour was not
captured again. The mesh had the same resistance for all nodesand a maximum dispersion
measured in pixels that indicated maximum mesh width.

Figura 9. Deformable mesh



The mesh constantly verified if any of its nodes had exceeded maximum disper-
sion; if this was the case, it was removed.

Figura 10. Node dispersion

The proposed solution defined that the mesh algorithm (ANN) should be subjec-
ted to evolution. It was therefore necessary to implement the fitness calculation within
the structure, considering the key aspects of optimality that establish measurement para-
meters between the different meshes in an image. The main characteristics of the fitness
calculation are defined below.

i) Dispersion score (vertical width): node dispersion is critical to recognize good cap-
ture because the band contour slope is very close to 0 in most cases; therefore, ade-
quate dispersion should not exceed two pixels.

ii) Score by node state: the mesh is by definition a set of nodes; therefore, their state is
the main measure of fitness. Each of the node state values are added to the fitness
value. (FREE: 0, READY: 1, BLOCKED: -1, WASTE: -2).

iii) Empty mesh: extreme case. If the mesh does not contain any nodes, fitness becomes
extremely negative and it is removed.

Therefore, the fitness score determines in the evolutionary algorithm which meshes sur-
vive and move on to the next generation.

The following pseudocode details the fitness calculation.



Algorithm 2 Fitness calculation
1. Verify if array of nets hasn’t nodes

IF array of nets hasn’t nodes
return -255

ENDIF
2. Calculate score (fitness) of the nets

i) Initialize fitness value in 0 and do:
FOREACH node in the net do
add the state value of the node to the fitness value
{FREE =0; READY = 1; BLOCKED = -1; WASTE=-2}

ENDFOREACH

ii) Calculate the thickness score
IF thickness is equal or lower than dispersion

thickness score will dispersion allowed-thickness
ELSE

thickness*-2
ENDIFELSE

iii) Add the thickness score to the fitnes value

5.2.3. Differential Evolution

General steps and decisions of the algorithm are summarized in Figure 11

Initial heuristics and evolution through lifetime were considered essential to the
implemented evolutionary algorithm, The insertion of each mesh generation was perfor-
med by heuristics that calculated the range of differences that allowed defining the re-
sistance of each node and band capture in the image. Heuristics vertically scanned the
image and calculated the maximum and minimum values of the differences between the
current and future pixel. Replacement by crossing for lifetime allowed meshes to adapt
and improve and then undergo selection without the need to mix their characteristics th-
roughout generations. The flowchart (Figure 12) shows the steps of mesh selection after
each generation.

The algorithm works with the following parameters:

i) Population density (vertical) (0-1): percentage of image vertical filling with meshes.
For example, if the value is 1, the image is fully covered by meshes in all vertical
positions; however, there is not a single mesh on the image if the value is 0.

ii) Node density (horizontal) (0-1): the same as in (i) but applied to the horizontal filling
of nodes in the mesh.

iii) Mutation (0-1): probability of individuals with random resistance characteristics
(outside the range calculated by heuristics) in each generation.

iv) Selection (0-1): percentage of the population of the current generation selected for
the next generation.

v) Sensitivity (0-1): percentage of resistance range calculated by heuristics formesh
insertion. When sensitivity is higher, capture occurs in more demarcated contours.



Figura 11. General diagram of differential evolution

vi) Dispersion (0-255): maximum value (in pixels) of node dispersion. The following
pseudocode provides the details of the implementation of the evolutionary algorithm.

6. Experiments and Analysis of Results
To carry out the experiments, lanes segmented from DGGE images were used. This sec-
tion includes the results of tests performed on a DGGE image with different preprocessing
levels when applying the algorithm; results exhibited meshes with better fitness and cap-
ture. The tests were performed with a lane from an already segmented image to observe
only the band detection behavior. All tests were run with a total of 999 generations. The
image (see Figure 13) size was 22 pixels (width) by 221 pixels (height).

6.1. Lane without Preprocessing
The algorithm was executed with the following parameters and values:

• Population density (vertical): 0.1
• Node density (horizontal): 0.3
• Mutation: 0.1
• Selection: 0.4
• Sensitivity: 0.4

Figure 14 shows raw processing of a DGGE lane. Meshes captured enough band contours
without error, but because the gradient in many band contours was very subtle, the meshes
could not capture this contour. Therefore, the meshes failed in this case. Sensitivy was
increased to 0.8; results are shown in Figure 15.

Increasing sensitivity to 0.8 produced greedy contour detection. Although it cap-
tured all the band contours, it also erred with noise gradients outside the bands.



Figura 12. Net selection diagram

Figura 13. DGGE image lane used in the tests

Figura 14. Lane without preprocessing after band detection with 0.6 sensitivity

Figura 15. Lane without preprocessing after band detection with 0.8 sensitivity

6.2. Laplacian Filter Lane
The Laplacian filter was applied as image preprocessing to see what would happen if the
algorithm was executed after this. Results are shown below.



Algorithm 3 Differential evolution applied to DGGE
1. Calculate score (fitness) of the nets

popdensity: Percentage of vertical (0,1)
ndensity: Percentage of horizontal (0,1)
mutation : [0,1]
nets: Array of nets empty

2. Calculate the minimum an the maximum pixel vertical value difference of the
image

3. Read hoy many generations should be generated, and to this:
FOREACH generation do
Calculate net specific features.
Calculate lifetime.
Generate the new nets of the current generation.
Move the nodes by direction.
Fit the population

ENDFOREACH

The values for each of the algorithm parameters were as follows:

• Population density (vertical): 0.1
• Node density (horizontal): 0.4
• Mutation: 0.1
• Selection: 0.4
• Sens1itivity: 0.4

Figure 16 shows the results of processing after applying the Laplacian filter to a
DGGE lane.

Figura 16. Lane with Laplacian filter after band detection

The filter caused the meshes to capture incorrect differences because the filter ac-
ted as deep contouring without eliminating noise. This tends to distort algorithm behavior.

6.3. Lane with Truncated Color Range

As a final preprocessing test on the DGGE lane in Fig. 13, attempt was made to truncate
the color range to define and focus the processing of the algorithm and eliminate noise
from the DGGE image. The information (grayscale) for each pixel in an image ranges
from 0 to 255 bytes. Preprocessing tries to reduce this range to emphasize the DGGE
image bands. The parameters and their values used for all executions are as follows:

• Population density (vertical): 0.1
• Node density (horizontal): 0.3



• Mutation: 0.1
• Selection: 0.4
• Sensitivity: 0.6

6.3.1. Truncated Range to 128 bytes

Figura 17. Lane truncated to 128 bytes after band detection

The results in Figure 17 are almost exactly the same as those in the lane with
no processing. Therefore, truncating the color range in half is not very useful for this
problem where images have low resolution and are very noisy.

6.3.2. Truncated Range to 64 bytes

Figura 18. Lane truncated to 64 bytes after band detection

The results observed in Figure 18 wereare better for detecting contours with noise
and with a very smooth gradient.

6.3.3. Truncated Range to 32 bytes

Figura 19. Lane truncated to 32 bytes after band detection

Finally, the results graphed in Figure 19 after implementing a lane with the trun-
cated color range to 32 bytes is a very good result when detecting the band contours
previously detected in other executions. However, it also detects contours with very smo-
oth gradients, which had been omitted in previous executions with other types of DGGE
image preprocessing.

6.3.4. Artificial Image: Truncated Range to 32 bytes

As a final experiment, an artificial image was created to corroborate the effectiveness of
the algorithm (see Figure 20).

The parameters and their values used for all executions are as follows:



Figura 20. Artificial image truncated to 32 bytes

• Population density (vertical): 0.6
• Node density (horizontal): 0.4
• Mutation: 0.1
• Selection: 0.2
• Sensitivity: 0.1

The result of this experiment is displayed in Figure 21

Figura 21. Artificial image truncated to 32 bytes after contour detection

7. Conclusions and Future Work

The execution of the algorithm in the image with no processing provides unfavorable re-
sults when there are high noise levels or very diffuse band gradients. Mesh behavior at
the insertion level is performed by normal distribution, which makes the algorithm fas-
ter. However, it avoids important characteristics of the problem, which could serve as
heuristics and generate mesh insertion in accurate positions by taking into account infor-
mation related to different gradients. By applying preprocessing filters to the image, band
contour recognition markedly improved, as well as mesh behavior on noisy areas and dif-
fuse gradients. In particular, truncating the color range allowed lowering noise levels and
obtaining good results. The algorithm in the early phase of the study shows appropriate
performance with the help of preprocessing. In the near future, we intend to implement
new heuristics related to mesh insertion and fitness providing greater intelligence to every
node and increased communication with its environment (analysis of pixels in a radius).
Current behavior is blind and only the mesh provides the flow of information between no-
des that enables band contour recognition. There is much to do in the field of automation
because it is a difficult and often unsystematic task to define appropriate parameters in
evolutionary algorithm . Therefore, implementing previous analysis algorithms to adjust
these parameters would greatly facilitate their usability and effectiveness.
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