Programming as learning resource in middle school

Ricardo P. Salvador’, Claudia Pons** and Guillermo L. Rodiguez*

"Escuela Superior de Comercio - Universidad Nacional de Rosario - Rosario -
Argentina

?Laboratorio de Investigacion y Formacion en Informatica Avanzada (LIFIA) -
Universidad Nacional de La Plata - La Plata - Argentina

?Centro de Altos Estudios en Tecnologia Informatica (CAETTI) - Universidad Abierta
Interamericana - Rosario - Argentina

*Facultad de Ciencias Exactas, Ingenieria y Agrimensura — Universidad Nacional de
Rosario — Rosario - Argentina

rsalvado@unr.edu.ar, cpons@info.unlp.edu.ar, guille@fceia.unr.edu.ar

Abstract. In this work we study the influence, in the kinematics learning of
secondary students, of the construction of a simulation using the Squeak-Etoys
graphical programming environment, as learning resource in a Rosario
(Argentine) city preuniversity middle school. The pupils are allmost 16 years
old and don't have knowledge about programming. Using an habitual
curricular exercise the experience took about 3 classes. The results indicate
an increase in students' grades and interest in programming as a didactic
resource, which encourages designing similar activities and exploring this
resource in other disciplines.

Keywords: programming, simulation, learning, middle school, physics

1. Introduction

This paper explores the usefulness of students' design and development of computer
models and simulations as a learning resource in middle school, in a discipline other
than those related to programming itself, using a user-friendly programming
environment (Squeak-Etoys). The contribution sought is to propose a methodology for
designing activities in which students should model and simulate school contents.

Section 2, theoretical framework, provides the programming concepts and the
use of simulations in Bloom Taxonomy, explains the possibilities offered by the
construction of simulations as a didactic resource, compiles the contributions of
constructionism to education through computers, presents references to the correlation
between programming and development of computational thought, highlights initiatives
of national and international scope promoting computer science and programming,
discusses particularly significant related works and characterizes the Squeak-Etoys
programming environment. The methodological framework, resources and tools used
are set out in section 3. Section 4 describes the results: the characteristics of the school

where the fieldwork was carried out, the groups of students participating, the meetings
that made up the experimental activity and the results of the diagnoses and evaluations
related. The discussion of the results is developed in section 5. Finally, the findings and
foresight are presented in section 6, and the bibliography is summarized in the seventh
and final section.

2. Theoretical Framework

2.1. Intellectual and digital skills

In the 1950s Benjamin Bloom defined a taxonomy of educational objectives and
intellectual abilities for teaching planning. This taxonomy has two characteristics: a)
objectives or thinking skills are ordered in a sequence of increasing complexity, from
lower order skills to higher order level, and b) mastering one of these skills implies
mastery of the preceding ones. Lorin Anderson published a review in 2001; Bloom's
Revised Taxonomy, which begins with the ability to remember as the simplest of all. It
continues with the ability to understand, apply, analyze, evaluate, and finish with the
ability to create, wich is the most complex and whose domain would imply dominion of
all previous ones. In 2009 Churches adds a series of skills from working with
Information and Communication Technologies, including the use of simulations

(associated with evaluation) and programming (associated with to create)[Churches
2009].

2.2. Computers, simulation and education

Computers and simulations offer the possibility of particularly active learning, a subject
on which we have contributions from Seymour Papert (1999) and Alan Kay (2007).

The modeling and implementation of system simulations is an activity that is
used for the study of complex and large-scale situations. Taking its approach into
account, articulating it with the programming environments (increasingly powerful and
usable) and hardware microcontrollers (increasingly and accessible), it can be a
valuable resource to enrich teaching-learning situations, incorporating other dimensions
to the usual modes of representation: time, movement, multimedia resources, and design
and interaction with these representations.

Analyzing a situation from a systemic point of view implies not only knowing
the system, its components and its environment in a descriptive way, but also its
properties and the processes through which they are dynamically related and modified
among themselves and with the environment. Model construction focuses on the
relevant aspects of a system for a certain study purpose[Gordon 1980]. And a
simulation is the implementation of a model[Kelton 2008]. Therefore, to consider the
construction of simulations as a learning resource implies for the student: a) system
understanding, b) abstraction of elements relevant to modelling, ¢) use of resources and
skills related to computational thinking in the implementation of simulation, d)
represent knowledge and interact with that representation, involving trial/error,
hypothesis testing, e¢) interact with others in the development and communication of the
activity.

Developing an application for this purpose makes it possible to evaluate the
operation of the simulation, intervenes in it and eventually improves it. This is
important from a didactic point of view, since the student (or group) performs a
complex and integral task with respect to the object of study, carrying out a set of
cognitive skills ranging from the simplest to those of greater intellectual complexity.

2.3. Contributions of Constructionism to Computer Education

Seymour Papert created the concept of constructionism, which he defines as giving
children good things to do so that learning takes place by doing them, as he thought that
instead of just interacting with technology they should learn to program their own
animations, games and simulations, and in the process learn problem-solving skills and
project design strategies[Resnick 2012].

He support the idea that learning occurs indirectly, using knowledge and not just
memorizing it. In other words, the way we learn best is through the action of building
something external to ourselves: building a tower, writing a story, building a robotic
artifact, programming a video game, or making an animation are all examples of
building. These kinds of activities are valuable because of what Papert calls "proof of
reality": if they don't work, they are a challenge to understand why, and to overcome
obstacles. They can be shared and discussed with others. And they serve as transitional
objects for the personal appropriation of these ideas [Papert 1999].

In developing the constructionist approach, Papert laid the foundations for
teaching with digital technologies, recognising that in the world changes were
increasingly rapid , giving a preferential place to the student's interests, for which new
knowledge must have a current meaning, valuing the confrontation of diverse and
alternative ways of thinking, giving programming a key place, assuming that students
can learn to program since an early age, where situations will arise. This, in turn, makes
a teacher learn at the same time as his students, rescuing the simulation capacity of
computers as an educational resource.

2.4. Computational thinking

Computational thinking is intellectual activity related to the formulation of a problem in
such a way that it can admit a solution by computational means, while the solution can
be carried out by a human being or a machine, or both[Wing 2010].

Kafai and Burke (2014), point out that programming is now recognized as an
answer to the need to develop computational thinking in students because they can solve
problems, design systems for everyday life, and generate progress in other disciplines.

2.5. Initiatives promoting Computer Science and Programming in schools

In recent years, the teaching of Computer Science in schools and the teaching of
Programming have been revalorized and used as an educational resource and as a
general competence in different parts of the world. For example, Raspberry Pi
(www.raspberrypi.org), Scratch (scratch.mit.edu), Squeak-Etoys (squeakland.org/about)
and Code. org.

In Argentina, the National Education Act No. 26,206 (2006) promotes

information and communication technology skills (Chapter 11, paragraph m), and the
teaching of "Programming" is declared of strategic importance by the 65th Assembly of
the Federal Council of Education (Resolution 263/15, art. 1°). Program.AR is an
initiative of the Sadosky Foundation, created in 2012, and aims to bring Computer
Science learning to schools (http://program.ar/quienes-somos/). "La hora del cédigo"
(joint Program.AR and Code.org initiative) offers resources for learning to program in a
fun and entertaining way as a way to approach Computer Science.

2.6. The Importance of teaching Computer Science in Argentinean Schools:
Sadosky Foundation report

According to the report of the Sadosky Foundation "Una propuesta para refundar la
ensefianza de la computacion en las escuelas Argentinas", programming provides tools
to stop being mere consumers of software, understand how it works and the digital
world in general, and improve intellectual skills. For this reason, the teaching of
programming in schools is proposed, not only focused on the teaching of a particular
language, but also on the development of computational thinking, as a basic skill in our
society (Fundacion Sadosky 2013).

2.7. Background

In order to collect background information on the use and/or construction of simulations
in education, a search in February 2016 resulted in a list of 17 works related to
experiences with computer simulations in formal education, which included
programming as an object of study, as a didactic resource or as a school content. Of the
17 publications, 3 papers refer to experiences in which students designed and
implemented a simulation as a secondary school learning strategy.

Faced with the observation of difficulties in working with physical formulas,
Taub and others (2015), measured the influence of programming simulations of systems
related to physics, using JAVA in a user-friendly environment, with groups of tenth and
eleventh grade students from different schools and selected based on their performance.
Developed over three years and often weekly, the study results indicate that
programming played an important role in physics learning.

Yohan Hwang, Kongju Mun, Yunebae Park (2016), in a study of perception of
programming, computational thinking and attitude about science learning in high school
students with Scratch (programming) and BitBrik (physical computing), found an
improvement in perception of computer programming and thinking, self-managed
thinking and interest in activity.

Lye, S. Y., Koh, J. H. L. (2014), in a review of 27 studies on the development of
computational thinking through programming, observed the importance of
programming, which exposes students to computational thinking. And that the
availability of free and easy-to-use programming languages meant an impulse to
investigate the introduction of computational thinking in K-12 contexts. They propose
that to encourage such practices, learning environments based on constructionalism and
integrating information processing, scaffolding and reflection should be further
researched and designed.

Also relevant is the work of Resnick and Brennan (2010), who developed a
framework for computational thinking and how to assess achievements on it. Based on
their interest in how Programming can help develop computational thinking, they drew
up a list of seven computer concepts common to it and to most computer languages:
sequence, cycle, event, parallelism of sequences, conditionals, operators and data. They
also observed design strategies around the activities they studied, in relation to
computational thinking: being incremental and iterative, rehearsing and debugging,
reusing and remixing, and ultimately abstracting and modularizing. Study participants
reported that they experienced changes in expressing themselves using technology,
connecting and interacting with others as a way to enrich their projects, and formulating
questions and answers related to technology and learning from programming.

2.8. Experience of teaching programming in middle schools in La Plata

Queiruga and Fava (2013) directed an extension project of the Computer Science
Faculty of the National University of La Plata (province of Buenos Aires, Argentina)
carried out within the framework of articulation actions with technical schools of the
Province of Buenos Aires for students and teachers in which programming and JAVA
were taught in order to a) strengthen technical education, b) improving the teaching of
programming and bringing programming closer to students through an innovative,
playful and social approach, ¢) improving the articulation of secondary school and
university.

The project's activities consisted of updating teachers on object-oriented
programming and JAVA and Eclipse (development environment), and generating
didactic strategies for the implementation of these contents in the classroom. At this
stage of the work speculated on using RITA (Robot Inventor to Teach Algorithms,
RITA in the JETs project,[http://jets.linti.unlp.edu.ar/rita]) for the initiation of students
into programming, due to its easy use for adolescents. RITA is a programming
environment in which virtual robot combat strategies must be designed; it integrates
OpenBlocks (http://education.mit.edu/openblocks) and Robocode
(http://robocode.sourceforge.net/) and code is generated by dragging and dropping
blocks similar to Etoys and Scratch.

Teaching materials were also produced to support the teaching of secondary
level programming for teachers and students.

Outstanding results of the project are a) interest of teachers at both levels in
continuing similar activities on a regular basis,) JAVA teaching was delayed to the
last stage of technical secondary school (5th grade), ¢) RITA was used in the third year
of the Basic Cycle, d) the tests using RITA were conducted with selected students (male
and female) aged 16 to 18 from the three schools participating in the project, e) after
testing more than 90% of the students surveyed had no difficulty in using RITA and
found it easier to program with that environment than with traditional environments. In
some cases it was experimented with logic circuits

Based on the convergence of problem-solving, the playful element (the robot
combat) and programming, Queiruga frames its work with the concept of "serious play",
which he defines, citing Sdnchez Gémez (2007), as "objects and/or learning tools that

have in themselves pedagogical, didactic, autonomous, self-sufficient and reusable
objectives that enable players to obtain a set of predominant knowledge and
competencies". Serious play, he says, is a confluence of interactivity and fun, valued by
young people, while promoting tolerance for frustration, the ease of relating to others,
and high motivation for achievement; all characteristics that make serious games "an
ideal technological element for transmitting knowledge" [Queiruga and Fava 2014].

2.9. Squeak-Etoys: a programming environment designed for education

Squeak-Etoys is a multimedia authoring system specially designed to learn ideas by
building them. Inspired by LOGO, Smalltalk, Hypercard and Starlogo, he developed
from Squeak at Walt Disney Imagineering (the research and development arm of The
Walt Disney Company) and was later supported by the Viewpoints Research Institute
(VPRI) as one of his projects. Etoys presents a unified style, user interface, media and
programming environment for building "things" with computers[Kay 2007]. Integrated
in the laptop software of the One Laptop Per Child project, this cross-platform
application (Linux, Windows and Mac) supports objects (text, bitmap and vector
images, sounds) that can be edited, sensing events, communicating with other objects,
and including program code. Its simplicity is proportional to the possibility of obtaining
results of great didactic quality: by facilitating code writing, it allows the user to focus
more on the problem that must be solved when implementing its simulation, and to
worry less about the problems of writing code.

The Etoys graphical interface consists of a desktop called world (figure 1), at the
top of which there is a foolbar (figure 2) that provides objects (figure 3), the basic
operations of creating, opening, saving and navigating between projects, and application
help. Every object is graphical and from it you get a contextual menu in the form of
icons that surround the object, called halos (figure 4). One of them opens a panel called
viewer (figure 5) from which the attributes, instructions, scripts (figure 6) and variables
of the selected object are obtained.

BECEEEIDAD < ¢ = e QM
oo vE+

tools bar to perform esentials operations
© [search | |

Q© vscripts
1 carscript, paused’

Q carscriptit | » jpaused i B

Car forward by $5»

Carturnby §1» viewer O ~basic

Of the Current ! Car make sound #E?‘Dﬁk

Yes Carturn by $ 90 selected ObJeCt | Carforward by 45

_ = (-car?) :

script

with simplest Blcersx $520

commands B carsy fa22
B car's heading $32

b= %‘ QO ~tests

(e} Prueba Si No

L] LN Car's Mlcoler sees [l color
(=] @ B Car'sis under mouse false
© =]

Car empty script

Test Car's is over color Illcolor

! Car twrn by §5¢

Car's is over color [l color
Car .
B car's obtrudes false

bitmap object .
. Car's overlaps any punto
selected, showing the
“ " Car's overlaps punte
halos

Figure 1: "world" of Etoys

The toolbar is the starting point for the most common operations: it shows the
name of the project, and buttons for drawing, getting objects for the project, changing
the language of menus and instructions, opening and saving projects, switching to full-

screen mode, and exiting Etoys (Figure 2).

navigate
between gpjects display save full
projects cojlection modes project screen

help

¢ ST P

lcn-w- ® i ON
7 ? b d

painting language
tool selector

load exit

roject name)
prel project Etoys

Figure 2: the “toolbar”

Provisions (figure 3) is the name given to the collection of morph objects
provided by Etoys. Clicking the corresponding button on the toolbar displays a list of
some commonly used objects, which in turn contains the "Catalogue of Objects", which
gives access to all objects, by means of categories, sorted alphabetically, or by typing

the name of the object.

the object catalog the button provisions display some objects
contains the full set of ‘

object L
ECEECAD « v n @ » e ON

\| = =
2 =" —_— ' TQXt oy D (\ ,/] ﬁ _‘ E
Object Catalog /All Scripts Players Trash Text Sound Recorder Rectangle Ellipse Star Book Holder

Joystick Playfield Flap Polygon Slider Grab patch Lasso

Figure 3: button "Provisions" and the "object catalog”

When an object is selected, its name ("auto”, in this case) and halos (figure 4)
are shown, as well as a series of icons of different colors and functions: display a menu,
move the object, duplicate it, change its size, rotate it, open a "viewer" of the object that
is a menu that shows which scripts that object has, if variables have been added to it, its
attributes and procedures or operations that the object can perform, and its attributes.
According to the type of objects, halos can vary depending on their properties: for
example, for bitmaps there is a halo to edit them, and for texts, there are halos to modify
font and size.

move
A enu object duplicate
N | object
delete i
L\
_ X 209
minimize — o o repaint object (in
o & <— caseit’s a bitma
unfold the dd o g
viewer v O <« resize
Carl) biect
turn onjec
object
name

Figure 4: a bitmap object and his "halos"

The viewer (figure 5) is the basic tool for generating code: it provides the
mosaics of instructions and attributes, and control of scripts. From a viewer you can
modify the attributes of the object and execute instructions without generating a hyphen.
In a viewer, mosaics are grouped into categories specific to each type of object; for
example, the object "sector" has a mosaic that allows you to obtain and establish the
value of its angle. Other categories are common to all objects, and refer, among other
things, to variables, scripts, color, motion, sound, geometry, and conditionals.

object hame
~

C
@ veE® commands
S S
search box
Q scripts
//!"Car scriptl paused
) - Carempty script
tiles categories @ basic
(commands, | I carmake sound croak‘
atributes, scripts, : Carforward by {5
variables \\\ | carturn by {5 ~
) . B car'sx 420 tiles to run
\\\ B car'sy 460 <¢— commands,
\\%‘Car's heading 145 read Or.Set
Q tests properties

Prueba Si No
Car's Mcolor sees Mcolor
B car'sis under mouse false

Car'sis over color Ecolor
B] Car's obtrudes false
Car's overlaps any punto

Car's overlaps punto

Figure 5: The "viewer"

Scripts (figure 6) are constructed with mosaics obtained from the viewers; once
inside the script, each mosaic representing an instruction can be modified using other
mosaics or typing inside. The instructions consist of words in the selected language,
making it easier to build scripts, and become gradually familiar with all the diversity of
objects, and categories of objects, instructions and attributes. The sequence of
instructions in a script can be executed once or repeatedly.

object script useful things to
name name build scripts
4« v vy
command O Carscript1 | » paused @ B
tiles ——— p» Carforward by :5

.

™ carturnby‘1l
\\‘ Test Car'sis over color Mcolor

Yes Carturn by 90
No

Figure 6: A simple script

3. Methodological framework

The fieldwork consisted of evaluating the effect of the use of modeling and simulation
in the construction of a program as a learning resource, through a pre-test/post-test
protocol in which a control group and an experimental group participated. A Physics
teacher was contacted and facilitated the participation of two of his courses, 30 and 24

students, in the roles of control group and experimental group. The members of the
latter group developed the simulation on a Uniform Rectilinear Movement "encounter"
exercise.

Prior to carrying out the experimental work, both groups were diagnosed a) a
diagnosis of the control and experimental groups in order to know characteristics of the
group regarding the use of digital technological resources, how to tackle problems,
knowledge about modeling and opinion of its usefulness in learning, and b) a survey on
kinematics contents, with questions on Uniform Rectilinear Motion.

The experimental activity was carried out in the classroom where the group
usually has class; netbooks of the Connecting Equality Plan were used, which include
Squeak-Etoys. It was foreseen that the work would be done in teams, especially to
encourage cooperation in the face of a new resource.

An interactive tutorial was used, designed to provide guidance for the activity
and workspace in a single window, so that changing windows continuously was
avoided. The activity slogans and guidelines for the activity were also printed to provide
an alternative source, in case there was any difficulty in reading, or if you wanted to
remove the tutorial guide for more screen space (especially considering that the netbook
screens are only 10.1 inches).

Since the students had to intervene by modifying and creating scripts and code,
it was expected that many unforeseen events would arise, so the guide was written with
the expectation that it would promote autonomous work and that the teacher's
intervention would be mainly ready to observe the work of the groups and intervene in
emerging situations.

The interactive tutorial was developed using a Squeak-Etoys resource called
"book" that allows you to add pages, similar to a multimedia presentation, with the
difference that each slide can also contain objects with their scripts and the presentation
can be intervened while it is being "used" (this means that changes can be made to the
presentation, the objects involved and their scripts; there is no difference between
editing and playback/reading instances as in other environments of the same type.

On each slide or tutorial page a) shows information on the exercise you are
trying to resolve b) programming concepts that are at stake are highlighted, c¢) at the
same time it proposes challenges related to its simulation, and clues for its resolution,
which is done by creating or modifying scripts or program scripts within each slide,
without leaving the "book" environment, d) by modifying or creating new scripts while
"reading" the tutorial within the same visual space (there is no distinction of author-
reading modes in Etoys), it facilitates the students' work by receiving immediate
feedback on their activity, e) there are tutorial navigation buttons and a progress bar
that indicates progress within the slide show sequence (figure 7).

. ejercicio142016ago c D ‘ &‘ . -
»

« B » 23:22 11/21

y Ejercicio 14 de Cinematica \
) 1 1 Otro desafio]
Y el desafio es... : © AutoAzul vertical | 1 latiendo i B
Imaginemos gue el auto, entre las 7 y las 9, pasa por un Prueba mundo's temporizador: { > &5

banco de niebla, por lo que entre ese "horario” no deberia
verse.
Usando los cor

Si AutoAzul's {y {184

vdos que hay en el recuadro verde, No
"ocultémaoslo” as pase por |la niebla, modificando el
lguién anterior "vertical” Prueba mundo's temporizador: § > £ 8

Si AutoAzul's {y {142
No

+ cambien el nombre del guién, de "vertical” a "niebla"

+ y deberdn cambiar algo més, iése es el desafio!

v AutoAzul ocultar|

mundo’s temporizador = -1377

H]l “ AutoAzul's x on graph = ' 85

Arequito AutoAzul'sv = 19 AutoAzul'st= 2

[} 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

+

Figure 7: A slide of the interactive tutorial

In addition, text in four colors was used to indicate different message types: a)
green text, was used to show operations that students should perform with Etoys, such
as building and modifying scripts, or configuring car parameters, b) blue text, to
highlight reflections on the problem being solved, or on programming resources, c) red
text, to raise challenges and advance the activity, d) black text, to refer to Etoys
concepts such as variable names, instructions or scripts.

The tutorial was organized in a series of partial problems, to an increasing
degree of complexity regarding the use of the programming environment as each stage
progresses towards the resolution of the exercise by constructing different stages of the
simulation. It can be downloaded from the follow link http://hdl.handle.net/2133/13002
at Repositorio Hipermedial de la Universidad Nacional de Rosario.

4. Findings

4.1. The school

The fieldwork was carried out at the Escuela Superior de Comercio "Libertador General
San Martin", dependent on the Universidad Nacional de Rosario. The school offers the
orientation "Marketing". Situated in the center of Rosario city (Santa Fe province,
Argentina), it has a population of approximately 1200 students grouped in commissions
of thirty, which are distributed in two shifts (morning and afternoon), five years and

four divisions.

The academic structure of the School groups related curricular spaces in
Departments directed by a Head and an Assistant or Area Coordinator, who coordinates
each particular curricular space.

The "Physics" curricular space is present from 3rd to 5th year, with a weekly 4-
hour teaching period; the didactic unit corresponding to "Kinematics" is the first of 4

http://hdl.handle.net/2133/13002

years.

The "Computing" curricular space: the School has this curricular space from 1st
to 4th year, with a weekly 2-hour teaching period in each year. The contents of this
curriculum do not include Programming or Algorithms.

4.2. Experimental activity
Prior indications

At the beginning of the first of the three classes that took place during the activity, the
following criteria were identified, although they were recalled in general and each group
in particular, during the whole experience, and whenever deemed necessary: a) It was
pointed out that there would be unexplained things, either intentionally for them to
intuit, imagine and propose (and put it into practice), or to interact by asking questions,
b) It was stressed that the activity works best with a proactive attitude, so the students
were asked to try and test this material and their own assumptions, without expecting to
do everything "right"; or wait for absolute certainty to start working: nothing's going to
break! c¢) It was also pointed out that the activity contains instructions on each page of
the tutorial so that each group can work at its own rhythm, and when needed, of course,
call the activity coordinator.

Development over time

The start of the pilot activity was scheduled for the end of April 2016, with a duration of
2 to 3 modules of 80 minutes, each on weekly bases, expected to be completed. Due to
unforeseen events that disrupted the school calendar, the activity took place during three
classes on June 9 and August 5 and 12.

At the beginning of the first class there were still 3 netbooks blocked, although
every day of the previous week the course was taken to unlock the netbooks, and those
who still had them blocked were asked to do so (the netbooks used have a security
device that forces them to use them periodically inside the school in order to avoid the
blockage referred to in this paragraph).

For the development of the activity, it was necessary to load the interactive
tutorial (a 1.1 Mb file), so it was planned to download it from the Internet, or from two
pendrives, an option that was used because there was no WiFi and the mobile phone
signal was not enough to implement an access point from a cell phone. There were 10
netbooks, and the task of copying the tutorials took almost 40 minutes out of 80 minutes
of the class, partly because some machines didn't recognize the pendrives (or took a
long time to do so) and others didn't have the original platform configuration and Etoys
had to be installed.

In the little more than 40 minutes of activity, the 10 groups that were formed
worked showing interest, with some distractions but exceeding 50% of the activity.

This class included the presentation of the activity, its objectives, the way of
working and the programming environment that was used, on which the tutorial
includes instructions.

In the second class, work continued using a modified version of the tutorial, in

which editorial corrections were made.

On this occasion, most of the groups reached the stage of the work in which the
behavior of the cars "protagonists" of the simulation is fully simulated. Since the two
cars involved in the exercise respond to the same pattern of behaviour, once one of the
cars has finished, it is only necessary to duplicate and modify its name, the parameters
relating to speed, on time, and appearance (the latter, to visually differentiate it from the
first car). When it came to modifying the look (one of the exercise cars is blue and the
other is green) almost everyone made a parenthesis to change something more than the
color to their new car.

In the third class, most of the groups solved the challenges of the penultimate
slide, in which they simulated the situation posed in the exercise; however, not all of
them finished the activity of the last slide, where they had to obtain and show the
answers to the exercise about time and distance of the encounter between the two cars.
When reaching the middle of the class, an evaluation of each group's work was made
and when the majority of them found it difficult in the last two challenges, it was
resolved to explain them to the whole group using a projector, so that each group could
then try to finish their work.

Throughout these experimental classes, motivation was shown and concerns
were expressed about how to change other aspects of the simulation, which in principle
was not foreseen as part of the activity: a) how to modify the appearance (colors,
shapes) of the simulation, b) simulate another type of movement (carrying out changes
of direction, describing curves, for example), c) also questions arose about the
possibility of creating simulations in other curricular spaces, about the programming
environment used and about how to learn how to program. It was observed that learning
the user interface, at the beginning of the experience, took up a lot of time that
decreased in the following classes.

4.3. Survey results

Control group

In this group, including of 62% of female students and 38% of male students, 70.37%
stated in the pre-test that they had used software at school to represent situations that are
usually done with pencil and paper, 48.15% to solve problems and 18% to build
applications (Figure 8).

Represent situations usually
done with pencil and paper

Build applications
Use simulations

Build models or simulations .

0,00% 20,00% 40,00% 60,00% 80,00%
Figure 8: Control group: students that had used software at school to...

About use of computer technology to solve problems on a daily basis, 88.88% said they
do it, and 55.56% prefer to solve problems in a group setting.

In comparison to the question on the concept of simulation, in the pre-test
29.63% answered correctly, while in the post-test 46.67% answered correctly (figure
11). Regarding the concept of model, 18.52% answered correctly in the pre-test and
40% in the post-test.

50%

47%
45%
35%
30%
25% H Pre
W Post
20%

15%
10%

5%

0%
Correc Incorrec NK/NA

Figure 9: Control group: what do you mean by simulation?

The post-test observed a reduction in uncertainty regarding these concepts, from
37.04% to 16.67% and from 40.74% to 6.67%, respectively. 77.78%, in the pre-test,
answered affirmatively about whether the use and/or construction of models and/or
simulations could contribute to their school learning, and in the post-test 76.67% did s6
(figure 9).

90%
80%
70%
60%

77,78% 76,67%

50% M Yes
40% ® No
30% 22.29% 2333% DK/DA
20%
10%
0%
Pre-test Post-test

Figure 10: Control group: can the use and/or construction of models
and/or simulations contribute to your school learning?

In the evaluation of kinematics contents, in the pre-test, the average of correct
answers was 59.26%, while in the post test, it was 57.06% (figure 10).

70%

60% o 5T

50%
38%
40% YL p—
30% H Pre
0% Post
0,

0% 6% 1% u Pre-Post

i 4% 4% variation

0% —0 _—

10% Correct Incorrect Don't know

Figure 11: Control group: evaluation of kinematics contents

Experimental group

The experimental group included of 79% of females students and 21% of males
students, of which 54.17% in the pre-test reported using software at school to represent
situations that are usually done with pencil and paper, and 37.5% to solve problems.
66.67% said they use computer technology to solve problems on a daily basis and
70.83% prefer to solve problems on an individual basis.

Represent situations usually
done with pencil and paper

Solve problems

Build applications

Use simulations

Build models or simulations

0% 10% 20% 30% 40% 50% 60%
Figure 12: Experimental group: students that had used software at school to...

As for the question on the model concept, 25% answered correctly in the pre-
test, while 36.36% in the post-test. Regarding the simulation concept, the correct
answers in the pre-test were 33.33%, with 59.59% in the post-test (figure 15).

90%

83%

80%

70%

60% 58%
50%
u Pre
40% u Post
30%
20%
10% 8% 8% 8%
o Il
Correct Incorrect NK/NA

Figure 13: Experimental group: what do you mean by
simulation?

The post-test observed a reduction in uncertainty regarding these concepts, from
70.83% to 33.33% and from 58.33% to 8.33%, respectively (figure 12). In the pre-test
evaluation, about whether the use and/or construction of models and/or simulations
could contribute to their school learning, 54.17 answered affirmatively and reaching
72.73% of these responses in the post-test (figure 13).

80% 75,00%
70%

60% 54,17%

50% 45,83%
N Yes
40%
B No
30% 25,00% DK/DA
20%
10%
0%
Pre-test Post-test

Figure 14: Experimental group: can the use and/or construction
of models and/or simulations contribute to your school learning?

In the evaluation of Kinematics contents, in the pre-test, the average of correct
answers was 56.25%, while in the post test, it was 60.42% (figure 14).

70,00%

60,42%
60,00% 56,25%

50,00%

40,00%
H Pre

29,69%31*25% Post
M Pre-Post
variation

30,00%

20,00%
14,06%

10,00% 8,33%
4,17% 156%
0070 - 0
0.00% . — =73%

Correct Incorrect NK/NA-

-10,00%
Figure 15: Experimental group: evaluation of kinematics contents

5. Discussion

The results of fieldwork indicate that the construction of a computer simulation using
the Squeak-Etoys programming language favoured the learning of school contents
related to kinematics, to a greater extent than developing classes with usual resources.

Comparison of the results of the pre- and post-test evaluations of kinematics
from the control group shows a decrease in ratings, while the results of the evaluations
of the experimental group in the post-test are superior to those of the pre-test.

These results coincide with those mentioned by Taub and others (2015), who
found that programming simulations of physical phenomena was an important factor in
learning physics, both in the visual representation of physical phenomena and in

structural knowledge, procedural knowledge and systemic knowledge.

This research, however, lasted three years during which weekly classes took
place and JAV A was used using a friendly environment, while the experimental work of
this thesis consisted of only three classes, and the language used is totally mediated by
an interface specially designed for non-experts where the orders are words of the natural
language and are translated into the native language, a factor that favored the use of the
application and a rapid learning of it.

In this work, the participating students belonged to different schools and were
selected for being especially talented students, while in the case of the students
participating in the fieldwork of this thesis, all of them belonged to a complete course,
without any kind of selection, and therefore, the group was heterogeneous in terms of
academic performance, which may have affected the grades, at the same time, that the
resource proposed in the activity can be considered valid.

Unlike the experience of Queiruga (2013) who worked with students from
technical schools, and Taub (2015) (a computer science course), the experimental work
of this thesis was carried out with groups of students who had no programming or
algorithmic knowledge; moreover, the orientation of their (commercial) career is alien
to the specific field of computing, computer science and other technical disciplines.
This difference in relation to the previous knowledge of the students participating in the
experiences mentioned above, meant a disadvantage for the students of the experimental
group that nevertheless obtained favorable results with respect to the contents of the
course, as well as the evaluation of the didactic resource used.

In both control and experimental groups, the uncertainty in the post-test
evaluation was reduced with respect to questions about the concepts of modeling and
simulation, although in all cases it was not directly matched by an increase in the
correct answers. However, this reduction indicates a construction of meaning on the part
of the students between the pre-test and post-test evaluations.

In the experimental group, the responses "don't know / don't answer" with
respect to the concept of "model" decreased almost 38%, mainly increasing the
incorrect responses in the post-test, while the responses "don't know / don't answer"
about "simulation" decreased from 50% to 8% while at the same time increased the
correct responses by 50%. It should be noted that the term most commonly used in
experimental activity, both in tutorial and oral communication, was "simulation".

Papert (1999) assimilates the figure of the apprentice to the teacher who directs
an activity in a constructionist key, since he will encounter new and unforeseen
situations even for the teacher himself. Situations in which he will have to learn while
the pupil, participating in the activity, will in turn learn from his teacher. During the
experimental classes unforeseen situations occurred, probably due to the fact that the
interactive tutorial remained open to modifications (as well as the environment itself)
because it was its primary property. However, these same emerging situations made
each group's experience unique, reflecting consequences of their own work and
allowing for solutions that were both unique and challenging for both students and
teachers.

He also acknowledges that his work will be harder but much more creative and
interesting. The contingencies were frequent, and made the teacher's work harder by
constantly responding to students' requests for help, and also creative as each situation
was different in each case.

The previous work to the activity with the students, especially the development
of the interactive tutorial, required many hours of work where each slide was part of a
strategy which use could be known only by testing it, and the experience met
expectations.

The work time required to develop the tutorial included tasks that were built for

the first time:

* choice of a topic whose learning is enriched by the type of work used in
fieldwork,

* re-create (teacher) the simulation and simplify it from the point of view of the
Etoys code so that it was as accessible to students as possible,

* deconstruct that simulation to create the slide show or tutorial page sequence
and its specific content; this involves writing the tutorial script, graphic
objects, and code components, and d. create a graphical layout common to all
slides for easy navigation

However, the material resulting from these tasks can be reused as a starting point
for new tutorials, using the design criteria indicated in the last point as a template, and
also recovering not only the content but also the methodology followed for the
accomplishment of the first three mentioned tasks. Astudillo (2016) highlights the
importance of reuse as a characteristic inherent to Learning Objects and desirable in
Digital Educational Materials in general. On the other hand, the idea of reusing or
recycling material is central to the programming and was weighed both by Papert and
Resnick, while at the same time being one of the characteristics of computational
thinking (on another scale, no operating system is completely rewritten in a new version
or distribution, but the previous one is modified).

The presentation of the interactive tutorial to the students included a
recommendation that they take the activity as a game. The importance of the
playfulness of a didactic activity is highlighted by Queiruga (2014), insofar as it
involves interaction with peers, fun, tolerance for frustration and motivation towards
achievement. Also, in a review of 27 works on teaching and learning computer thinking
through programming, Lye and Koh (2014), citing Jonassen, Kaffai and Resnick, found
better results when the problems they propose to students are of interest, making them
more committed to the activity, and suggesting working around issues such as game
design, game strategies and digital story making. Notwithstanding the differences
between the objective of this review and that of this thesis, the suggestions of Lye and
Koh (2014) make it necessary, when including the construction of simulations, to
reformulate conventional activities in order to achieve significance.

One of the features of computational thinking[Wing 2010] is the possibility of
generalizing and transferring procedures to different fields of Computation and
Systems, which in this experience has been successfully carried out through the
programming of a simulation, coinciding with the findings of positive results in most of

the 27 experiences analyzed by Lye and Koh (2014).

Knowledge of the user interface initially took up little exclusive learning time; in
a few minutes, working groups were focused on solving the first challenges. In the
project "Teaching Programming in Secondary School", Queiruga(2013) points out a
change of language: JAVA for RITA (a more user-friendly environment, in the style of
Scratch and Squeak-Etoys), because it considers the user interface more appropriate for
the age range of the students. This adaptation of the interface, in line with the above-
mentioned work, reinforces the viability of this type of interfaces in the introduction of
programming as a learning resource in non-league contexts, such as education in
general, even in the initiation of specific careers in systems or computing.

During the activity, motivation was observed and in dialogue with the students,
they expressed interest in this way of working. At the same time, after the fieldwork, the
number of students increased by 34% who indicated that using and building simulations
could contribute to their learning. These results coincide with those obtained by Yohan,
Kongju and Yunebae (2016), which mention improvements in the perception of
computational thinking and students' engagement and interest in activities.

In addition, the group of students who participated in the experimental work co
on the possibility consulted f creating simulations related to other contents and other
curricular spaces, which indicates motivation and interest in the methodology.

These concerns expressed by students, when valuing learning activities that
emphasize the protagonism of the learner, are encouraging and remind Papert (1999)
when he points out that education was too focused on its informative facet and digital
technologies could correct the imbalance and strengthen the constructive facet, while
highlighting the ability of computers to create simulations as an educational resource.

In addition to trying to solve the proposed challenges, some students expressed
curiosity about how to modify various aspects of the simulation beyond those proposed,
such as the colors, shapes and size of objects (the cars), and whether it would be
possible to simulate other types of movement. Questions about making these
modifications seem to indicate interest in putting their personal mark on the task, in
expressing yourself, beyond what the guidelines request, in short, appropriation of the
activity. Coincidentally, the expression was one of the first findings in Brennan and
Resnick's research (2012).

6. Conclusions and future work

The construction of a simulation by Squeak-Etoys favoured the learning of Kinematics
contents, evidenced in the increase in the qualifications of the post-test evaluations. The
foregoing coincides with other similar investigations with axis in Physics contents
[Taub 2015].

The results of the experimental activity were satisfactory; for example, after
carrying out the experimental activity, the students who understood the concept of
simulation increased almost three times. Even for a heterogeneous group, unlike the
previous case [Taub 2015] in which the students were selected based on capacity. Also,
with that work, there is a diference regarding the duration and number of classes

between the two investigations, as well as the programming language used.

In related works, is pointed out that in the first steps when programming give
better results using friendly graphical interfaces similar to Scratch and Squeak-Etoys,
the application used in the field work described in this paper, and with good results, in
accordance with same kind articles.

Programming the simulation was shown to be a valid teaching resource even for
students without programming or algorithmia knowledge; and proposing the experience
with playful characteristics, challenges, meaningful contents for the students and
mediated by new technology, favored the learning and interest of the students in the
media used. Also, building the simulation of the kinematics exercise generated
motivation in the students, as well as positive expectations regarding using the same
way of working in other learning curricular topics. The students, in addition to assessing
the type of activity they did, were curious about the ways to express themselves that the
programming environment brings and put their personal stamp on the activity using the
tools of that authoring environment.

The work around the interactive tutorial resulted in a series of reusable resources
in future activities, and feedback to improve them, reducing the time of new
developments.

May be, as innovative experience, the activity presented numerous contingencies
and challenges for the teacher, which meant greater intensity in the task while
promoting flexibility in the asymmetry between teaching and student roles, as they
tackled these challenges together and worked enthusiastically.

May be, because was an innovative experience, the activity presented numerous
contingencies and challenges for the teacher, which meant greater intensity in the task
while promoting flexibility in the asymmetry between teacher and student roles, as they
tackled these challenges together and worked enthusiastically.

Regarding future work, the following possible lines of action are considered:

1. exploring this way of working in other disciplines

2. the construction of sequences composed of more interrelated activities

3. deepen the analysis of results from the point of view of student motivation
and expression

4. include programming as another means of representation

5. recording the tasks common to several experiences in order to produce a
methodological guide

References

Astudillo, Javier, “Estrategias de disefio y ensamblaje de Objetos de Aprendizaje”, M.S.
thesis, Universidad Nacional de La Plata, 2016

Churches, Andrew, “Taxonomia de Bloom para la era digital”,
http://www.eduteka.org/TaxonomiaBloomDigital.php, traducido de Churches,
Andrew “Bloom's Digital Taxonomy”, 2009 http://edorigami.wikispaces.com.

Accessed on 11/06/2015

Fundacién Sadosky, “CC-2016 - Una propuesta para refundar la ensefanza de la
computacion en las escuelas Argentinas”, pe. 23, 2013,
http://www.fundacionsadosky.org.ar/wp-content/uploads/2014/06/cc-2016.pdf

Gordon, Geoffrey, “Simulacién de sistemas”, Ed. Diana, México D.F., 1° Ed. 1980, 6°
reimpresion 1991

Kafai, Y., Burke, Q., “Connected Code — Why Children Need to Learn Programming”,
The MIT Press, 2014

Kay, Alan, "Children Learning By Doing — Etoys on the OLPC XO", Viewpoints
Research Institute, 2007, http://wiki.laptop.org/images/2/28/OLPCEtoys.pdf.
Accessed on 16/12/2016

Kelton W., Sadowski R., Sturrock D., “Simulacién con Software Arena”, 4° edicion Ed.
McGraw-Hill Inc., Espafia, 2008

Lye, S.Y., Koh, J.LH.L., "Review on teaching and learning of computational thinking
through programming: What is next for K-12? ", Computers in Human Behavior,
Dec2014, Vol. 41, pS1-61. 11p. URL:
http://www.sciencedirect.com/science/article/pii/S0747563214004634. Accessed on
20/02/2017

Papert, Seymour, "Logo Philosophy and Implementation”, Logo Computer Systems Inc.
Introduction, 1999, http://www.microworlds.com/company/philosophy.pdf.
Accessed on 15/11/2015

Queiruga, C., Fava, L., “Ensefar a Programar en la Escuela Secundaria. Experiencias
del proyecto Java en Escuelas Técnicas”, Memorias del 1* Congreso de Extension de
la Asociacion de Universidades Grupo Montevideo -AUGM-Extenso 2013, Ed:
Universidad de la Republica, ISBN 978-9974-0-1038. URL:
http://www .linti.unlp.edu.ar/uploads/docs/ensenar_a_programar_en_la_escuela_secu

ndaria_experiencias_del_proyecto_java_en_escuelas_tecnicas.pdf. Accessed on
21/02/2017

Queiruga, C., Fava, L., Gémez, S., Kimura, 1., Brown Bartneche, M., “El juego como
estrategia diddctica para acercar la programacion a la escuela secundaria”, XVI
Workshop de Investigadores en Ciencias de la Computacion 2014.
http://jets.linti.unlp.edu.ar/uploads/docs/wicc_2014.pdf. Accessed on 11/06/2015

Resnick, M., Brennan, K., “New frameworks for studying and assessing the
development of computational thinking”, 2012,
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_ AERA2012_CT.pdf
Accessed on 30/11/2016

Resnick, Mitchel, “Reviving Papert's Dream”, Educational-technology — the magazine
for managers of change in education, Volume 52, Number 4, JulyAugust 2012,
http://web.media.mit.edu/~mres/papers/educational-technology-2012.pdf. Accessed
on 29/08/2015

Sénchez Gémez,M., “Buenas Practicas en la Creacion de Serious Games (Objetos de
Aprendizaje Reutilizables)”, Universidad de Madlaga. 2007, Disponible en:
http://ceur-ws.org/Vol-318/Sanchez.pdf. Accessed on 14 de julio de 2016

Taub, Armoni, Bagno, Ben-Ari, "The effect of computer science on physics learning in
a computational science environment", Computers & Education Volume 87,
September 2015, Pages 10-23, URL:
http://www.sciencedirect.com/science/article/pii/S0360131515000913. Accessed on
21/02/2017

Wing, Jeannette M., “Computational Thinking: What and Why?, Scholl of Computer
Science”, Carnegie Mellon University, 2010,
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf. Accessed on
29/11/2016]

Yohan Hwang, Kongju Mun, Yunebae Park, "Study of Perception on Programming and
Computational Thinking and Attitude toward Science Learning of High School
Students through Software Inquiry Activity: Focus on using Scratch and physical
computing materials", Journal of the Korean Association for Science Education,
2016, URL: http://koreascience.or.kr/article/ArticleFullRecord.jsp?
cn=GHGOBX_2016_v36n2_325. Accessed on 21/02/2017

	1. Introduction
	2. Theoretical Framework
	2.1. Intellectual and digital skills
	2.2. Computers, simulation and education
	2.3. Contributions of Constructionism to Computer Education
	2.4. Computational thinking
	2.5. Initiatives promoting Computer Science and Programming in schools
	2.6. The Importance of teaching Computer Science in Argentinean Schools: Sadosky Foundation report
	2.7. Background
	2.8. Experience of teaching programming in middle schools in La Plata
	2.9. Squeak-Etoys: a programming environment designed for education

	3. Methodological framework
	4. Findings
	4.1. The school
	4.2. Experimental activity
	4.3. Survey results

	5. Discussion
	6. Conclusions and future work

