

Evaluation of Transfer Learning Techniques in Neural

Networks with Tiny-scale Training Data

Gabriela Pérez1,2, Milagros Jacinto1, Martín Moschettoni1, Claudia Pons1.3.4

1 Facultad de Informática, Universidad Nacional de La Plata, Argentina

2 UNAJ, Universidad Nacional Arturo Jauretche, F. Varela, Buenos Aires, Argentina

3 Comisión de Investigaciones Científicas CIC, Bueno Aires, Argentina

4 UAI, Universidad Abierta Interamericana, Ciudad de Buenos Aires

{Gperez,Mjacinto,Mmoschettoni,Cpons}@lifia.info.unlp.edu.ar

Abstract. This paper rigorously analyzes the process of building a deep neural network

for image recognition and classification using Transfer Learning techniques. The biggest

challenge is assuming that the training dataset is very small. The research is based on

addressing a particular case study, the income of donations to the Food Bank of La Plata.

The results obtained corroborate that the techniques analyzed are appropriate to solve

tasks of detection and classification of images even in cases in which there is a very

moderate number of samples.

Resumo. Este artigo analisa rigorosamente o processo de construção de uma rede neural

profunda para reconhecimento e classificação de imagens usando técnicas de Transfer

Learning. O maior desafio é assumir que o conjunto de dados de treinamento é muito

pequeno. A pesquisa se baseia em abordar um estudo de caso particular, a receita de

doações ao Banco de Alimentos de La Plata. Os resultados obtidos corroboram que as

técnicas analisadas são adequadas para resolver tarefas de detecção e classificação de

imagens mesmo em casos em que há um número muito moderado de amostras.

Keywords: machine learning, transfer learning, pre-trained models, small dataset, food

bank, Keras, Convolutional Neural Networks.

1 Introduction

Machine learning (Alpaydin, 2016) is an area within Artificial Intelligence (Russell &

Norvig, 2021) whose objective is to develop techniques that allow computers to learn to

perform specific tasks effectively. It focuses on building predictive mathematical models

from large sample or training datasets. One of the most used methods applies Artificial

Neural Networks (ANNs) (Goodfellow , Bengio, & Courville, 2016) which is a

biologically inspired approach to machine learning, inspired by the functioning of the

nervous system and learning in living organisms. Within this approach, the Deep

Learning (DL) technique involves the construction of artificial neural networks with

many layers that are iteratively trained using large data sets (LeCun, Bengio, & Hinton,

2015).

A vital aspect in capturing knowledge is the possibility of storing and reusing it, so that

each new artificial intelligence system does not have to start learning from zero. The

technique that addresses this problem is called Transfer Learning (Jialin & Yang, 2010)

and basically consists of building models trained to large scale, for the purpose of being

reused. These models are called pre-trained models (Han, 2021). AlexNet (Krizhevsky,

Sutskever, & Hinton, 2017), BERT and GPT (Hugging-Face, s.f.) are good examples of

this kind of models. They have achieved great success and have become a milestone in

the field of artificial intelligence. These models have tens of millions of parameters and

have been trained on big data. That way they effectively capture the knowledge and can

be adjusted to solve similar problems. One of the advantages of working with the transfer

learning technique is the possibility of achieving an effective model with little training

data.

In order to analyze this characteristic, a case study was developed: the classification of

products for the Food Bank of La Plata (http://bancoalimentario.org.ar). This organization

aims to recover food, to be distributed to community organizations. It works with

donations whose classification is a cumbersome task due to its diversity and quantity,

which is currently carried out by manual means. The objective of this case study is to

verify the feasibility of building a Machine Learning model to properly classify the food

received in donations but counting with very few images for training.

This article is organized as follows. In Section 2, the Transfer Learning technique applied

to image recognition and classification using artificial neural networks is described. The

different training strategies and their development process are explained. In Section 3 the

food bank of La Plata that will be used as a case study, is presented. Then, in section 4,

each of the steps taken to build the image recognition model for food products is

discussed. To this end, different models are trained and compared to analyze the factors

that determine their effectiveness, considering that very little training data is available.

Finally, section 5 presents the conclusions and lines of future work.

http://bancoalimentario.org.ar/

2 Transfer learning concepts

Transfer learning is an area within deep learning, which focuses on the incorporation of

knowledge obtained during the resolution of a certain problem and its subsequent

application on a different but related one (Jialin & Yang, 2010). Using the traditional

Deep Learning technique, models must be trained from scratch. Instead, using Transfer

Learning a knowledge base is built from the training of source tasks, so that it can be

transferred to another target task, requiring less quantity and quality of training data

(Torrey & Shavlik, 2009). In this case, the new model does not learn from scratch.

Instead, a model previously trained to solve another task is used as a starting point.

There are three measures to know the improvements produced using Transfer Learning:

-The first is the initial performance that can be achieved on the target task, using only the

transferred knowledge, before any further learning is undertaken.

-The second measure is the level of final performance achievable in the target task.

-And the third is the amount of time it takes to fully learn the target task given the

transferred knowledge.

The application of transfer learning methodologies increases the degree of generalization

of deep learning models, allowing the use of smaller data sets (tens or hundreds of

instances) and greater simplicity (low dimensionality, few features). In addition, it saves

learning time and reduces required computing resources by making the requirement for

high-performance hardware more flexible. This allows good performance of models with

fewer iterations for training. Finally, it allows more robust and widely applied

representations (Torrey & Shavlik, 2009).

2.1 Transfer Learning Strategies

Considering the question "what to transfer?" four approaches emerge, whose treatment

allows to evaluate the particular aspects of each problem and apply the most appropriate

techniques (Neyshabur, 2020).

These approaches are:

­ Instance transfer: Certain parts of the source domain data are considered useful in

training on the target domain and can be reused.

­ Feature representation transfer: the contribution is the discovery and learning of a

good feature representation of the target domain to reduce differences between

domains and the error of the generated model.

­ Parameter transfer: It is assumed that the source and target tasks share parameters

or previous distributions of model hyperparameters. The transferred knowledge is

encoded in shared parameters.

­ Relational knowledge transfer: It assumes the existence of relationships between

the data of both domains, assuming that they are relational domains. These

relationships between domains represent the knowledge to be transferred by

building relational knowledge mappings.

Pre-trained neural networks are a transfer learning technique that is based on combining

instance transfer, feature representation and parameter transfer. Using deep neural

networks, the knowledge acquired by solving a source problem is stored in the

architecture of the network and in the weights of the neural connections. These parameters

and hyperparameters can be re-used and adjusted, making it easier to build a model for

the target problem.

2.2 Transfer learning for image recognition

 Convolutional neural networks are a type of deep artificial neural network very effective

for computer vision tasks, such as image classification, among other applications. These

networks have a feature extraction phase followed by fully connected layers that perform

the corresponding classification.

There are numerous pre-trained convolutional network architectures (Model Zoo - Deep

learning code and pretrained models for transfer learning, educational purposes, and

more., 2022) to recognize images, which are directly available for use in libraries such as

Keras (Keras, s.f.), Theano, Pytorch (Pytorch, s.f.) They were trained with large-scale

image sets, including millions of images, to allow generic models to be created. These

models correctly classify the images into various categories, which represent classes of

objects found in everyday life (animal species, household objects, vehicles, etc.). They

also show a great ability to generalize images outside the source dataset. However, if the

target problem is very different, the obtained prediction could be weak.

Different strategies are used to build a model from a pre-trained one. The most used are

as follows (Figure 1 illustrates the three strategies):

­ Strategy 1. The whole model is trained. In this case, the architecture of the pre-

trained model is used and trained with the dataset. The model learns from scratch,

so it will need a large data set and a lot of computational power.

­ Strategy 2. Some layers are trained, and the others are left frozen. The initial layers

of the model capture general characteristics, independent of the problem, while

the final layers represent specific, more problem-dependent characteristics. This

dichotomy is balanced by choosing different sectors of the network to make the

tunings. Some layers are kept frozen, i.e. they do not change during training.

Usually, with a small dataset and many parameters, more layers will be left frozen.

Conversely, if the dataset is large and the number of parameters is small, you can

improve the model by training more layers for the new task.

­ Strategy 3. Freeze the convolutional base. This case corresponds to an extreme

situation of training/freezing exchange. The main idea is to keep the convolutional

base in its original form and then use its outputs to feed the classifier. The pre-

trained model is used as a fixed-feature extraction mechanism, which is useful

when having little computational power, the set of data is small and/or the pre-

trained model solves a problem very similar to the target problem.

Figure 1. Tuning strategies on models

Unlike strategy 3, which is simple to implement, strategy 1 and strategy 2 require careful

management of the learning rate used in the convolutional part. This hyperparameter

controls the rate at which the weights of the network are updated. When using a pre-

trained model based on convolutions, it is advisable to use a small learning rate, because

otherwise there are high risk of losing prior knowledge. Assuming the pre-trained model

performs well, maintaining a small learning rate will ensure that network weights are not

abruptly distorted.

2.3 Transfer Learning Process

From a practical perspective, the entire transfer learning process can be summarized in

the following stages:

­ Selection of a pre-trained method. From the wide range of available models, one

should be chosen that suits the problem.

­ Re-training design. The problem is classified considering the size of the dataset

and its similarity to the data with which the selected model was trained. This

classification will allow defining the most appropriate training strategy.

­ Model tuning. Re-training the model according to the strategy defined in the

previous step.

Figure 2 shows a diagram with four quadrants that guide the selection of the model's

training strategy. This map allows to classify the problem taking into account the size and

similarity of the available data with the dataset used for the pre-trained model. A dataset

is considered small if it has less than a thousand images per class. About the similarity,

common sense should prevail.

The quadrants defined on the map are as follows:

Quadrant 𝑫+𝑺− . Large dataset, but different from the pre-trained model dataset. This

situation leads to Strategy 1. The model can be trained from scratch, taking advantage of

having a large dataset. Despite the dataset difference, in practice, it can still be useful to

initialize the model from a previously trained model, using its architecture. and weights.

Quadrant 𝑫+𝑺+ . Large dataset and similar to the pre-trained model dataset. This is the

ideal situation. Either of the options works. The most efficient option is Strategy 2. Since

the datasets are similar, effort of learning can be avoided by leveraging prior knowledge.

Therefore, it is enough to train the classifier and the final layers of the convolutional base.

Quadrant 𝑫−𝑺−. Small dataset and different from the pre-trained model dataset. This is

the worst situation. In this case, Strategy 2 should be chosen. It is difficult to find a balance

between the number of layers for training and for freezing. More training should be done,

and data augmentation techniques considered.

Quadrant 𝑫−𝑺+. Small dataset, but similar to the pre-trained model dataset. In this case,

Strategy 3 should be chosen. It is necessary to remove the last fully connected layer

(classifier), run the model previously trained as a fixed feature extractor and then use the

features resulting for training a new classifier.

Figure 2. Decision map to fine-tune pre-trained models

3 Case Study: The Food Bank

This section describes each of the steps taken to build the image recognition model for

the food bank of La Plata. The objective of this case study is to verify the feasibility of

building a machine learning model which allows to properly classify food received in

donations but counting with very few images to train the model.

3.1 Description of the target problem

The food bank named “Banco Alimentario de La Plata” is a non-profit civil society

founded in 2000. It follows an operation process that is based on international

experiences, which aims to value food. It is based on recovering food and making it

available to vulnerable sectors. Food is a delicate issue, so the Food Bank has strict

protocols and standards in all the processes it performs, which are reviewed through

regular audits.

The Food Bank receives donations containing different products, of different brands

which must be classified, stored, and recorded. Figure 3 shows one of the donations

received. This task, currently performed manually, is repetitive, tedious, and error-prone,

so it would be a great contribution to automate it allowing the members of the bank to

focus their efforts on other tasks.

Therefore, it has been proposed to create software tools based on machine learning to

assist in the task of classifying and registering products.

Figure 3 - One of the donations received by the Bank

3.2 Dataset definition

The dataset was created with images of food products grouped into different categories,

such as water bottles, rice packages, tuna cans, flour packages and milk boxes. Figure 4

shows an example image for each of these categories.

A balanced dataset of 150 images was constructed, 30 images for each category, which

will be separated for the training, validation, and testing sets. They were photographed

with white background.

Figure 4. Dataset images for each of the categories

3.3 Image pre-processing and data augmentation

To increase the size of the dataset, the data augmentation technique was used (Shorten &

Khoshgoftaar, 2019) which consists of applying geometric changes to all images in the

dataset as cuts, rotations, etc. This is useful for the case of having limited data as it

increases the diversity of the final set. It also helps avoiding overfitting and allows better

generalization.

The data augmentation process was performed using Keras' image generator, named

ImageData Generator. It was configured to normalize the values, and to generate in

addition to the original image, other images transformed by zoom, horizontal and vertical

flip rotations, cut transformations, etc. Figure 5 shows some of the generated images.

Figure 5: Images of milk after applying data augmentation.

This process was applied only on the training set. For each original photo, 42 new photos

were obtained with the modifications mentioned above. The validation and testing

package remained unchanged.

4 Transfer learning process: experiments and results

4.1 Selection of Pre-Trained Models

The first step in the transfer learning process is the selection of a pre-trained model

appropriate to the problem. It is necessary to find models that offer good performance in

the source tasks. In this case, several open access Deep Learning architectures published

in Keras (https://keras.io/api/applications/) were investigated. This site provides a

collection of Deep learning models that were previously trained using datasets available

on the Internet. The selected networks were VGG16, Xception and MobileNetV2 which

are very popular and were trained on the ImageNet dataset (https://www.image-net.org/)

which is a database containing more than 14 million tagged images, belonging to 1000

classes, with similarity to the target problem.

Table 1 shows the characteristics of the chosen networks. The size column indicates the

network disk size expressed in MB. The top1 and top5 columns refer to how often the

real labels appear between the most important K predictions using the ImageNet dataset.

The parameter column specifies the number of network parameters while the depth refers

to the topological depth of the network, including activation layers, normalization layers,

etc.

Table 1: Characteristics of the networks selected from Keras.

Model Size (MB) Top-1

Accuracy

Top-5

Accuracy

Parameters Depth Time (ms)

per

inference

step (CPU)

Time (ms)

per

inference

step (GPU)

VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2

Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1

MobileNe

t

16 70.4% 89.5% 4.3M 55 22.6 3.4

4.2 Initial performance of selected pre-trained models

To describe the initial accuracy of the networks in the classification of the bank's products,

the terms top-1 and top-5 are used. The term top-1 refers to the class predicted by the

network. The term top-5 refers to the first 5 classes predicted by the network.

https://keras.io/api/applications/
https://www.image-net.org/
https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/xception
https://keras.io/api/applications/mobilenet
https://keras.io/api/applications/mobilenet

Table 2 shows the prediction provided by the network for the dataset images and the

number of times it occurs. In addition, the most frequently predicted class is displayed

among the classes present in the top5. For example, XCeption correctly recognizes 29

images of a water bottle (water_bottle), while only 1 is misclassified as pop_bottle.

Table 2: Predictions made by pre-trained models

 Tuna Flour Water Rice Milk

VGG 16

Top-1

oil_filter : 9

can_opener : 6

face_powder :

5

Crock_Pot : 2

Sunscreen : 2

mortar : 1

coffee_mug : 1

pill_bottle : 1

bucket : 1

tennis_ball : 1

drum : 1

Packet : 12

Sunscreen : 6

paper_towel :

4

oil_filter : 3

toilet_tissue :

2

eggnog : 1

Carton : 1

plastic_bag : 1

water_bottle :

28

Nipple : 2

Packet : 22

water_bottle :

1

Sunscreen : 1

SARONG : 1

sleeping_bag :

1

plastic_bag : 1

tennis_ball : 1

shopping_bask

et : 1

Band_Aid : 1

Band_Aid : 13

Packet : 4

Sunscreen : 4

NIPPLE : 3

Lotion : 3

Carton : 1

oil_filter : 1

combination_l

ock : 1

 Most

predicted class

among the

Top-5

oil_filter : 21 Packet : 24 water_bottle :

30

Packet : 28 Band_Aid : 28

XCeption

Top1

oil_filter : 10

can_opener : 7

face_powder :

7

Crock_Pot : 3

bucket : 1

steel_drum : 1

Sunscreen : 1

Packet : 19

Sunscreen : 4

toilet_tissue :

3

Carton : 3

book_jacket :

1

water_bottle :

29

pop_bottle : 1

Packet : 27

paper_towel :

1

sleeping_bag :

1

plastic_bag : 1

Packet : 9

Band_Aid : 5

Sunscreen : 5

NIPPLE : 4

Carton : 4

Lotion : 2

web_site : 1

 Most

predicted class

among the

Top-5

oil_filter : 24

Packet : 29 water_bottle :

30

Packet : 29

Packet : 27

Mobile Top 1 oil_filter : 10

face_powder :

6

Sunscreen : 4

Bucket : 3

can_opener : 2

Crock_Pot : 1

buckle : 1

Barrel : 1

drum : 1

Packet : 20

toilet_tissue :

3

Carton : 3

oil_filter : 2

Band_Aid : 1

paper_towel :

1

water_bottle :

24

pop_bottle : 5

NIPPLE : 1

Packet : 27

sleeping_bag :

2

Jersey : 1

Packet : 14

Carton : 6

NIPPLE : 4

Band_Aid : 2

oil_filter : 1

CD_player : 1

Chihuahua : 1

Sunscreen : 1

chocolate_will

ow : 1

 Most

predicted class

among the

Top-5

face_powder :

17

Packet : 28

water_bottle :

30

Packet : 29 Packet : 27

It can be seen that some items are not recognized by the pre-trained network. For example,

none of the nets properly recognize tuna cans. However, they all recognize water bottles

quite accurately. In the cases of flour, rice and milk, the images are mostly recognized as

the same class: package.

4.3 Re-training design

In this case study there is a small labeled dataset which is quite similar to the source

problem, therefore it is necessary to explore the quadrants 𝑫−𝑺+ and 𝑫−𝑺− described in

section 3. Therefore, the pre-trained model will be used as a feature extractor of the

images to be recognized and then the resulting features will be used to train a new

classifier. To improve the fit, some inner layers of the pre-trained net will also be

defrosted and retrained. Finally, since the data set is very small, some data augmentation

technique should be applied.

4.4 Re-trainig after replacing the classification layer

This section explores the quadrant 𝑫−𝑺+ For that, the last layer is removed, and the

previously trained model is used as a fixed characteristics extractor. Finally, the resulting

features are used to train a new classifier.

The classification layer is defined as follows:

­ A flatten layer

­ A dense layer of X neurons

­ dropout layer (0.Y)

­ Dense layer with Softmax activation.

­ X and Y will be different numerical values that will be analyzed for each of the

models.

In all configurations, the early stopping technique is used with a maximum of 40 epochs.

This technique allows training to finish once model performance stops improving over

the validation dataset. This technique allows the network to have the necessary training

preventing overfitting.

For each model, experiments were carried out that included analyzing the different

configurations of the dropout layer, that is, different values for the variable Y, between

0.3 and 0.7. For each of these values, different configurations for the dense layer were

analyzed, that is, different values for variable X. It was tested with 128, 256, 512, 1024

and 2048 neurons. Tables 3, 4 and 5 show the matrices with the training results using

each combination of values, for the VGG16, Xception and MobileNetV2 networks

respectively. The results show the number of epochs the training lasted, the confusion

matrix and the final accuracy of the network.

Table 3: Results of experiments conducted using the VGG16 network

Number of

neurons

Dropout 0.3 Dropout 0.4 Dropout 0.5 Dropout 0.6 Dropout 0.7

128 Epoch 40/40

 [9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 32/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 40/40

 [9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 21/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 19/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 5 2]

 [0 0 0 0 9]

Acc: 0.9111

256 Epoch 39/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 37/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 27/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 24/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 29/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 1 0 0 8]

Acc: 0.9111

512 Epoch 27/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 35/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 31/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 1 0 0 8]

Acc: 0.9111

Epoch 40/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 26/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9333

1024 Epoch 25/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 23/40

 [9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 1 0 8 0]

 [0 0 0 0 9]

Acc: 0.9555

Epoch 26/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 33/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 32/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

2048 Epoch 24/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

acc:0.9111

Epoch 23/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 1 0 0 8]

Acc: 0.9111

Epoch 25/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 29/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 1 0 0 8]

Acc: 0.9111

Epoch 23/40

[9 0 0 0 0]

 [0 7 0 2 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9111

Table 4: Results of experiments conducted using the Xception network

 Dropout 0.3 Dropout 0.4 Dropout 0.5 Dropout 0.6 Dropout 0.7

128 Epoch 28/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 18/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc:0.9333

Epoch 27/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9556

Epoch 28/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 1 5 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 14/40

 [9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9111

256 Epoch 17/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 21/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 21/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 16/40

 [9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9556

Epoch 40/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 6 0]

 [0 0 0 0 9]

Acc: 0.9333

512 Epoch 29/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 6 0]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 20/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 15/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 6 0]

 [0 1 0 0 8]

Acc: 0.9111

Epoch 20/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9556

Epoch 22/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

1024 Epoch 17/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9555

Epoch 18/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 1 0 8]

Acc: 0.9333

Epoch 27/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 3 0 6 0]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 28/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 11/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

2048 Epoch 14/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 28/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9555

Epoch 26/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 5 1]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 16/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 3 0 6 0]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 28/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9333

Table 5: Results of experiments conducted using the MobileNetV2 network

 Dropout 0.3 Dropout 0.4 Dropout 0.5 Dropout 0.6 Dropout 0.7

128 Epoch 24/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

Epoch 18/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 0 0 8 1]

Epoch 21/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

Epoch 20/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 1 0 8 0]

Epoch 28/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 1 0 8 0]

 [0 0 0 0 9]

Acc: 0.9333

 [0 0 0 0 9]

Acc: 0.9555

 [0 0 0 0 9]

Acc: 0.9333

 [0 0 0 0 9]

Acc: 0.9777

 [0 0 0 0 9]

Acc: 0.9555

256 Epoch 21/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 1 0 8 0]

 [0 0 0 2 7]

Acc: 0.9111

Epoch 20/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 20/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 1 0 8 0]

 [0 0 0 0 9]

Acc: 0.9777

Epoch 13/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 1 0 6 2]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 16/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 6 1]

 [0 0 0 0 9]

Acc: 0.9333

512 Epoch 15/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 12/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 0 0 9 0]

 [0 0 0 0 9]

Acc: 0.9777

Epoch 23/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 0 0 9 0]

 [0 0 0 0 9]

Acc: 0.9777

Epoch 31/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9555

Epoch 30/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9555

1024 Epoch 27/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 0 0 8 1]

 [0 0 0 0 9]

Acc: 0.9777

Epoch 20/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9555

Epoch 17/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 5 2]

 [0 0 0 0 9]

Acc: 0.9111

Epoch 16/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 0 0 9 0]

 [0 0 0 0 9]

Acc: 0.9777

Epoch 21/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 0 0 9 0]

 [0 0 0 0 9]

Acc: 0.9777

2048 Epoch 25/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 1 0 8 0]

 [0 0 0 1 8]

Acc: 0.9333

Epoch 30/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9555

Epoch 30/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 1 0 8 0]

 [0 0 0 0 9]

Acc: 0.9777

Epoch 24/40

[9 0 0 0 0]

 [0 8 0 1 0]

 [0 0 9 0 0]

 [0 2 0 7 0]

 [0 0 0 0 9]

Acc: 0.9333

Epoch 13/40

[9 0 0 0 0]

 [0 9 0 0 0]

 [0 0 9 0 0]

 [0 0 0 8 1]

 [0 0 0 0 9]

Acc: 0.9777

It is noteworthy that all models show good accuracy recognizing water bottles and cans

of tuna. This is probably because the shape of these products is evidently different from

the others. On the other hand, in the cases of flour, models often are not able to recognize

the totality of the images.

Regarding the performance of the networks, they all obtain very good results. There is no

significant difference between the different configurations. The best model is obtained

with MobileNet, which reaches an accuracy of 0.97% with only 13 training epochs.

4.5 Re-training by defrosting some layers

To explore the quadrant 𝑫−𝑺−, some layers of the models were defrosted and re-trained.

In the case of VGG16, layers are defrosted from the 4th convolution block. This means

moving from having 12,848,133 trainable parameters in the dense layer, to 25,827,333

trainable parameters and 1,735,488 non-trainable.

In the case of Xception there are 51,383,301 trainable parameters in the dense layer and

when defrosting the layers from block 7 you have 67,855,541 trainable parameters and

4,389,240 non-trainable

Finally, in the case of MobileNet V2 there are 32,378,373 trainable parameters in the

dense layer and when defrosting the layers from block 9 you have 34,184,197 trainable

parameters and 189,504 non-trainable.

After applying this process, the results obtained were similar. The tuned models were not

able to improve the 97% accuracies already obtained.

5 Conclusion and future work

In this article, the process of building a model for image recognition and classification

using the transfer learning technique, was detailed. The research was based on addressing

a particular case study, the income of donations to the Food Bank of La Plata. One of the

determining features of the domain was that the available training dataset was very small.

Each stage of model development was analysed. The first stage consisted of investigating

the pre-trained models available for similar tasks and thus selecting the candidates that

best suit the target problem. Three pre-trained models of different characteristics were

tested: VGG16, Xception and MobileNetV2.

The re-training process of these candidate models was then designed, choosing the most

appropriate training strategies taking into account the size of the dataset and the similarity

between source and target domains.

Finally, the candidate models were re-trained by applying the strategies defined in the

previous step and evaluating different configurations of dropout layers and number of

neurons. Controlled tests were performed under the same conditions.

From this analysis it was possible to determine the pre-trained model that acquires

knowledge faster and achieves better performance.

The best accuracy was obtained with MobileNet, which reaches 0.97% with only 13

training times. However, no significant difference was observed between the different

configurations since all models achieved very good results, greater than 0.90% and in all

cases without exceeding 40 training epochs.

The results obtained in the investigations corroborate that the techniques of transfer

learning in deep neural networks are appropriate to solve tasks of detection and

classification of images even in cases where there is a very moderate number of samples.

Future developments: This work can be extended by incorporating other models to the

analysis and also evaluating different techniques of re-training and adjustment, additional

to those developed so far. On the other hand, the final model developed for the food bank

should be integrated into the software applications currently used in the bank for entry

and recording of donations. This task was started but there are still several tasks to be

done until the system can be put into operation.

References

Alpaydin, E. (2016). Machine Learning: The New AI. MIT Press.

Anaconda. (s.f.). Obtenido de https://www.anaconda.com/

Goodfellow , I., Bengio, Y., & Courville, A. (2016). Deep Learning. Adaptive

Computation and Machine Learning series.

Han, X. Z. (2021). Pre-Trained Models: Past, Present and Future,. AI Open,

https://doi.org/10.1016/.

Hugging-Face. (s.f.). Transformers. Recuperado el 2022, de

https://github.com/huggingface/transformers

Jialin , S., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering, (22)10. , 1345-1359.

Keras. (s.f.). Obtenido de Keras https://keras.io/

Krizhevsky, A., Sutskever, N., & Hinton, G. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), .

doi:10.1145/3065386, 84–90.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature 521, 436-444.

Model Zoo - Deep learning code and pretrained models for transfer learning, educational

purposes, and more. (2022). Obtenido de https://modelzoo.co/(date

Neyshabur, B. S. (2020). What is being transferred in transfer learning?. . Advances in

neural information processing systems, 33, 512-523.

Pytorch. (s.f.). Obtenido de https://pytorch.org/

Russell, S., & Norvig, P. (2021). Artificial Intelligence. A Modern Approach. Copyright

© 2021 . Pearson Education. 4ta edición.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for

Deep Learning. Mathematics and Computers in Simulation.r. 6: 60.

doi:10.1186/s40537-019-0197-0

TensorFlow. (s.f.). Obtenido de https://www.tensorflow.org/

Torrey, L., & Shavlik, J. (2009). Transfer Learning. In Machine Learning Applications

and Trends: Algorithms, Methods, and Techniques. p.834. University of

Wisconsin. University of Wisconsin.

