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Abstract. This paper rigorously analyzes the process of building a deep neural network 

for image recognition and classification using Transfer Learning techniques. The biggest 

challenge is assuming that the training dataset is very small. The research is based on 

addressing a particular case study, the income of donations to the Food Bank of La Plata. 

The results obtained corroborate that the techniques analyzed are appropriate to solve 

tasks of detection and classification of images even in cases in which there is a very 

moderate number of samples. 

Resumo. Este artigo analisa rigorosamente o processo de construção de uma rede neural 

profunda para reconhecimento e classificação de imagens usando técnicas de Transfer 

Learning. O maior desafio é assumir que o conjunto de dados de treinamento é muito 

pequeno. A pesquisa se baseia em abordar um estudo de caso particular, a receita de 

doações ao Banco de Alimentos de La Plata. Os resultados obtidos corroboram que as 

técnicas analisadas são adequadas para resolver tarefas de detecção e classificação de 

imagens mesmo em casos em que há um número muito moderado de amostras. 

Keywords: machine learning, transfer learning, pre-trained models, small dataset, food 

bank, Keras, Convolutional Neural Networks. 

 

 

 



 

 

1 Introduction 

Machine learning (Alpaydin, 2016) is an area within Artificial Intelligence (Russell & 

Norvig, 2021) whose objective is to develop techniques that allow computers to learn to 

perform specific tasks effectively. It focuses on building predictive mathematical models 

from large sample or training datasets. One of the most used methods applies Artificial 

Neural Networks (ANNs) (Goodfellow , Bengio, & Courville, 2016) which is a 

biologically inspired approach to machine learning, inspired by the functioning of the 

nervous system and learning in living organisms. Within this approach, the Deep 

Learning (DL) technique involves the construction of artificial neural networks with 

many layers that are iteratively trained using large data sets (LeCun, Bengio, & Hinton, 

2015).  

A vital aspect in capturing knowledge is the possibility of storing and reusing it, so that 

each new artificial intelligence system does not have to start learning from zero. The 

technique that addresses this problem is called Transfer Learning (Jialin & Yang, 2010) 

and basically consists of building models trained to large scale, for the purpose of being 

reused. These models are called pre-trained models (Han, 2021). AlexNet (Krizhevsky, 

Sutskever, & Hinton, 2017), BERT and GPT (Hugging-Face, s.f.) are good examples of 

this kind of models. They have achieved great success and have become a milestone in 

the field of artificial intelligence. These models have tens of millions of parameters and 

have been trained on big data. That way they effectively capture the knowledge and can 

be adjusted to solve similar problems. One of the advantages of working with the transfer 

learning technique is the possibility of achieving an effective model with little training 

data. 

In order to analyze this characteristic, a case study was developed: the classification of 

products for the Food Bank of La Plata (http://bancoalimentario.org.ar). This organization 

aims to recover food, to be distributed to community organizations. It works with 

donations whose classification is a cumbersome task due to its diversity and quantity, 

which is currently carried out by manual means. The objective of this case study is to 

verify the feasibility of building a Machine Learning model to properly classify the food 

received in donations but counting with very few images for training. 

This article is organized as follows. In Section 2, the Transfer Learning technique applied 

to image recognition and classification using artificial neural networks is described. The 

different training strategies and their development process are explained. In Section 3 the 

food bank of La Plata that will be used as a case study, is presented. Then, in section 4, 

each of the steps taken to build the image recognition model for food products is 

discussed. To this end, different models are trained and compared to analyze the factors 

that determine their effectiveness, considering that very little training data is available. 

Finally, section 5 presents the conclusions and lines of future work.  

http://bancoalimentario.org.ar/


 

2 Transfer learning concepts 

Transfer learning is an area within deep learning, which focuses on the incorporation of 

knowledge obtained during the resolution of a certain problem and its subsequent 

application on a different but related one (Jialin & Yang, 2010). Using the traditional 

Deep Learning technique, models must be trained from scratch. Instead, using Transfer 

Learning a knowledge base is built from the training of source tasks, so that it can be 

transferred to another target task, requiring less quantity and quality of training data 

(Torrey & Shavlik, 2009). In this case, the new model does not learn from scratch. 

Instead, a model previously trained to solve another task is used as a starting point.  

There are three measures to know the improvements produced using Transfer Learning: 

-The first is the initial performance that can be achieved on the target task, using only the 

transferred knowledge, before any further learning is undertaken.  

-The second measure is the level of final performance achievable in the target task. 

-And the third is the amount of time it takes to fully learn the target task given the 

transferred knowledge.  

The application of transfer learning methodologies increases the degree of generalization 

of deep learning models, allowing the use of smaller data sets (tens or hundreds of 

instances) and greater simplicity (low dimensionality, few features). In addition, it saves 

learning time and reduces required computing resources by making the requirement for 

high-performance hardware more flexible. This allows good performance of models with 

fewer iterations for training. Finally, it allows more robust and widely applied 

representations (Torrey & Shavlik, 2009).  

2.1  Transfer Learning Strategies 

Considering the question "what to transfer?" four approaches emerge, whose treatment 

allows to evaluate the particular aspects of each problem and apply the most appropriate 

techniques (Neyshabur, 2020).  

These approaches are: 

­ Instance transfer: Certain parts of the source domain data are considered useful in 

training on the target domain and can be reused.  

­ Feature representation transfer: the contribution is the discovery and learning of a 

good feature representation of the target domain to reduce differences between 

domains and the error of the generated model.  

­ Parameter transfer: It is assumed that the source and target tasks share parameters 

or previous distributions of model hyperparameters. The transferred knowledge is 

encoded in shared parameters. 

­ Relational knowledge transfer: It assumes the existence of relationships between 

the data of both domains, assuming that they are relational domains. These 

relationships between domains represent the knowledge to be transferred by 

building relational knowledge mappings.  



 

Pre-trained neural networks are a transfer learning technique that is based on combining 

instance transfer, feature representation and parameter transfer. Using deep neural 

networks, the knowledge acquired by solving a source problem is stored in the 

architecture of the network and in the weights of the neural connections. These parameters 

and hyperparameters can be re-used and adjusted, making it easier to build a model for 

the target problem.  

2.2 Transfer learning for image recognition 

 Convolutional neural networks are a type of deep artificial neural network very effective 

for computer vision tasks, such as image classification, among other applications. These 

networks have a feature extraction phase followed by fully connected layers that perform 

the corresponding classification. 

There are numerous pre-trained convolutional network architectures (Model Zoo - Deep 

learning code and pretrained models for transfer learning, educational purposes, and 

more., 2022) to recognize images, which are directly available for use in libraries such as 

Keras (Keras, s.f.), Theano, Pytorch (Pytorch, s.f.) They were trained with large-scale 

image sets, including millions of images, to allow generic models to be created. These 

models correctly classify the images into various categories, which represent classes of 

objects found in everyday life (animal species, household objects, vehicles, etc.). They 

also show a great ability to generalize images outside the source dataset. However, if the 

target problem is very different, the obtained prediction could be weak.  

Different strategies are used to build a model from a pre-trained one. The most used are 

as follows (Figure 1 illustrates the three strategies): 

­ Strategy 1. The whole model is trained. In this case, the architecture of the pre-

trained model is used and trained with the dataset. The model learns from scratch, 

so it will need a large data set and a lot of computational power. 

­ Strategy 2. Some layers are trained, and the others are left frozen. The initial layers 

of the model capture general characteristics, independent of the problem, while 

the final layers represent specific, more problem-dependent characteristics. This 

dichotomy is balanced by choosing different sectors of the network to make the 

tunings. Some layers are kept frozen, i.e. they do not change during training. 

Usually, with a small dataset and many parameters, more layers will be left frozen. 

Conversely, if the dataset is large and the number of parameters is small, you can 

improve the model by training more layers for the new task. 

­ Strategy 3. Freeze the convolutional base. This case corresponds to an extreme 

situation of training/freezing exchange. The main idea is to keep the convolutional 

base in its original form and then use its outputs to feed the classifier. The pre-

trained model is used as a fixed-feature extraction mechanism, which is useful 

when having little computational power, the set of data is small and/or the pre-

trained model solves a problem very similar to the target problem. 



 

 

 

Figure 1. Tuning strategies on models  

 

Unlike strategy 3, which is simple to implement, strategy 1 and strategy 2 require careful 

management of the learning rate used in the convolutional part. This hyperparameter 

controls the rate at which the weights of the network are updated. When using a pre-

trained model based on convolutions, it is advisable to use a small learning rate, because 

otherwise there are high risk of losing prior knowledge. Assuming the pre-trained model 

performs well, maintaining a small learning rate will ensure that network weights are not 

abruptly distorted. 

2.3  Transfer Learning Process 

From a practical perspective, the entire transfer learning process can be summarized in 

the following stages:  

­ Selection of a pre-trained method. From the wide range of available models, one 

should be chosen that suits the problem. 

­ Re-training design. The problem is classified considering the size of the dataset 

and its similarity to the data with which the selected model was trained. This 

classification will allow defining the most appropriate training strategy.  

­ Model tuning. Re-training the model according to the strategy defined in the 

previous step.  

Figure 2 shows a diagram with four quadrants that guide the selection of the model's 

training strategy. This map allows to classify the problem taking into account the size and 

similarity of the available data with the dataset used for the pre-trained model. A dataset 



 

is considered small if it has less than a thousand images per class. About the similarity, 

common sense should prevail. 

The quadrants defined on the map are as follows: 

Quadrant 𝑫+𝑺− . Large dataset, but different from the pre-trained model dataset. This 

situation leads to Strategy 1. The model can be trained from scratch, taking advantage of 

having a large dataset. Despite the dataset difference, in practice, it can still be useful to 

initialize the model from a previously trained model, using its architecture. and weights. 

Quadrant 𝑫+𝑺+ . Large dataset and similar to the pre-trained model dataset. This is the 

ideal situation. Either of the options works. The most efficient option is Strategy 2. Since 

the datasets are similar, effort of learning can be avoided by leveraging prior knowledge. 

Therefore, it is enough to train the classifier and the final layers of the convolutional base. 

Quadrant 𝑫−𝑺−. Small dataset and different from the pre-trained model dataset. This is 

the worst situation. In this case, Strategy 2 should be chosen. It is difficult to find a balance 

between the number of layers for training and for freezing. More training should be done, 

and data augmentation techniques considered. 

Quadrant 𝑫−𝑺+. Small dataset, but similar to the pre-trained model dataset. In this case, 

Strategy 3 should be chosen. It is necessary to remove the last fully connected layer 

(classifier), run the model previously trained as a fixed feature extractor and then use the 

features resulting for training a new classifier. 

 

 

Figure 2. Decision map to fine-tune pre-trained models 



 

 

3 Case Study: The Food Bank 

This section describes each of the steps taken to build the image recognition model for 

the food bank of La Plata. The objective of this case study is to verify the feasibility of 

building a machine learning model which allows to properly classify food received in 

donations but counting with very few images to train the model. 

3.1 Description of the target problem 

The food bank named “Banco Alimentario de La Plata” is a non-profit civil society 

founded in 2000. It follows an operation process that is based on international 

experiences, which aims to value food. It is based on recovering food and making it 

available to vulnerable sectors. Food is a delicate issue, so the Food Bank has strict 

protocols and standards in all the processes it performs, which are reviewed through 

regular audits. 

The Food Bank receives donations containing different products, of different brands 

which must be classified, stored, and recorded. Figure 3 shows one of the donations 

received. This task, currently performed manually, is repetitive, tedious, and error-prone, 

so it would be a great contribution to automate it allowing the members of the bank to 

focus their efforts on other tasks.  

Therefore, it has been proposed to create software tools based on machine learning to 

assist in the task of classifying and registering products. 

 

Figure 3 - One of the donations received by the Bank 

 

3.2  Dataset definition 

The dataset was created with images of food products grouped into different categories, 

such as water bottles, rice packages, tuna cans, flour packages and milk boxes. Figure 4 

shows an example image for each of these categories.  

A balanced dataset of 150 images was constructed, 30 images for each category, which 

will be separated for the training, validation, and testing sets. They were photographed 

with white background. 



 

 

Figure 4. Dataset images for each of the categories 

 

3.3 Image pre-processing and data augmentation 

To increase the size of the dataset, the data augmentation technique was used (Shorten & 

Khoshgoftaar, 2019) which consists of applying geometric changes to all images in the 

dataset as cuts, rotations, etc. This is useful for the case of having limited data as it 

increases the diversity of the final set. It also helps avoiding overfitting and allows better 

generalization.  

The data augmentation process was performed using Keras' image generator, named 

ImageData Generator. It was configured to normalize the values, and to generate in 

addition to the original image, other images transformed by zoom, horizontal and vertical 

flip rotations, cut transformations, etc. Figure 5 shows some of the generated images. 

 

 

 

 

Figure 5: Images of milk after applying data augmentation. 

 

This process was applied only on the training set. For each original photo, 42 new photos 

were obtained with the modifications mentioned above. The validation and testing 

package remained unchanged. 



 

4 Transfer learning process: experiments and results 

4.1 Selection of Pre-Trained Models 

The first step in the transfer learning process is the selection of a pre-trained model 

appropriate to the problem. It is necessary to find models that offer good performance in 

the source tasks. In this case, several open access Deep Learning architectures published 

in Keras (https://keras.io/api/applications/) were investigated. This site provides a 

collection of Deep learning models that were previously trained using datasets available 

on the Internet. The selected networks were VGG16, Xception and MobileNetV2 which 

are very popular and were trained on the ImageNet dataset (https://www.image-net.org/) 

which is a database containing more than 14 million tagged images, belonging to 1000 

classes, with similarity to the target problem.  

Table 1 shows the characteristics of the chosen networks. The size column indicates the 

network disk size expressed in MB. The top1 and top5 columns refer to how often the 

real labels appear between the most important K predictions using the ImageNet dataset. 

The parameter column specifies the number of network parameters while the depth refers 

to the topological depth of the network, including activation layers, normalization layers, 

etc.  

Table 1: Characteristics of the networks selected from Keras. 

Model Size (MB) Top-1 

Accuracy 

Top-5 

Accuracy 

Parameters Depth Time (ms) 

per 

inference 

step (CPU) 

Time (ms) 

per 

inference 

step (GPU) 

VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2 

Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1 

MobileNe

t 

16 70.4% 89.5% 4.3M 55 22.6 3.4 

4.2 Initial performance of selected pre-trained models  

To describe the initial accuracy of the networks in the classification of the bank's products, 

the terms top-1 and top-5 are used. The term top-1 refers to the class predicted by the 

network. The term top-5 refers to the first 5 classes predicted by the network.  

https://keras.io/api/applications/
https://www.image-net.org/
https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/xception
https://keras.io/api/applications/mobilenet
https://keras.io/api/applications/mobilenet


 

Table 2 shows the prediction provided by the network for the dataset images and the 

number of times it occurs. In addition, the most frequently predicted class is displayed 

among the classes present in the top5. For example, XCeption correctly recognizes 29 

images of a water bottle (water_bottle), while only 1 is misclassified as pop_bottle.  

 

Table 2: Predictions made by pre-trained models  

 Tuna Flour Water Rice Milk 

VGG 16 

Top-1 

oil_filter : 9 

can_opener : 6 

face_powder : 

5 

Crock_Pot : 2 

Sunscreen : 2 

mortar : 1 

coffee_mug : 1 

pill_bottle : 1 

bucket : 1 

tennis_ball : 1 

drum : 1 

Packet : 12 

Sunscreen : 6 

paper_towel : 

4 

oil_filter : 3 

toilet_tissue : 

2 

eggnog : 1 

Carton : 1 

plastic_bag : 1 

water_bottle : 

28 

Nipple : 2 

Packet : 22 

water_bottle : 

1 

Sunscreen : 1 

SARONG : 1 

sleeping_bag : 

1 

plastic_bag : 1 

tennis_ball : 1 

shopping_bask

et : 1 

Band_Aid : 1 

Band_Aid : 13 

Packet : 4 

Sunscreen : 4 

NIPPLE : 3 

Lotion : 3 

Carton : 1 

oil_filter : 1 

combination_l

ock : 1 

 Most 

predicted class 

among the 

Top-5 

oil_filter : 21 Packet : 24 water_bottle : 

30 

Packet : 28 Band_Aid : 28 

XCeption 

Top1 

oil_filter : 10 

can_opener : 7 

face_powder : 

7 

Crock_Pot : 3 

bucket : 1 

steel_drum : 1 

Sunscreen : 1 

Packet : 19 

Sunscreen : 4 

toilet_tissue : 

3 

Carton : 3 

book_jacket : 

1 

water_bottle : 

29 

pop_bottle : 1 

 

 

Packet : 27 

paper_towel : 

1 

sleeping_bag : 

1 

plastic_bag : 1 

 

 

Packet : 9 

Band_Aid : 5 

Sunscreen : 5 

NIPPLE : 4 

Carton : 4 

Lotion : 2 

web_site : 1 

 Most 

predicted class 

among the 

Top-5 

oil_filter : 24 

 

 

Packet : 29 water_bottle : 

30 

Packet : 29 

 

Packet : 27 

 

Mobile Top 1 oil_filter : 10 

face_powder : 

6 

Sunscreen : 4 

Bucket : 3 

can_opener : 2 

Crock_Pot : 1 

buckle : 1 

Barrel : 1 

drum : 1 

Packet : 20 

toilet_tissue : 

3 

Carton : 3 

oil_filter : 2 

Band_Aid : 1 

paper_towel : 

1 

 

water_bottle : 

24 

pop_bottle : 5 

NIPPLE : 1 

 

Packet : 27 

sleeping_bag : 

2 

Jersey : 1 

Packet : 14 

Carton : 6 

NIPPLE : 4 

Band_Aid : 2 

oil_filter : 1 

CD_player : 1 

Chihuahua : 1 

Sunscreen : 1 

 



 

chocolate_will

ow : 1 

 Most 

predicted class 

among the 

Top-5 

face_powder : 

17 

 

Packet : 28 

 

water_bottle : 

30 

Packet : 29 Packet : 27 

It can be seen that some items are not recognized by the pre-trained network. For example, 

none of the nets properly recognize tuna cans. However, they all recognize water bottles 

quite accurately. In the cases of flour, rice and milk, the images are mostly recognized as 

the same class: package. 

4.3 Re-training design 

In this case study there is a small labeled dataset which is quite similar to the source 

problem, therefore it is necessary to explore the quadrants 𝑫−𝑺+ and 𝑫−𝑺− described in 

section 3. Therefore, the pre-trained model will be used as a feature extractor of the 

images to be recognized and then the resulting features will be used to train a new 

classifier. To improve the fit, some inner layers of the pre-trained net will also be 

defrosted and retrained. Finally, since the data set is very small, some data augmentation 

technique should be applied. 

4.4 Re-trainig after replacing the classification layer 

This section explores the quadrant 𝑫−𝑺+ For that, the last layer is removed, and the 

previously trained model is used as a fixed characteristics extractor. Finally, the resulting 

features are used to train a new classifier. 

The classification layer is defined as follows: 

­ A flatten layer 

­ A dense layer of X neurons 

­ dropout layer (0.Y)  

­ Dense layer with Softmax activation.  

­ X and Y will be different numerical values that will be analyzed for each of the 

models.  

In all configurations, the early stopping technique is used with a maximum of 40 epochs. 

This technique allows training to finish once model performance stops improving over 

the validation dataset. This technique allows the network to have the necessary training 

preventing overfitting. 

For each model, experiments were carried out that included analyzing the different 

configurations of the dropout layer, that is, different values for the variable Y, between 

0.3 and 0.7. For each of these values, different configurations for the dense layer were 

analyzed, that is, different values for variable X. It was tested with 128, 256, 512, 1024 

and 2048 neurons. Tables 3, 4 and 5 show the matrices with the training results using 

each combination of values, for the VGG16, Xception and MobileNetV2 networks 



 

respectively. The results show the number of epochs the training lasted, the confusion 

matrix and the final accuracy of the network.  

 

Table 3: Results of experiments conducted using the VGG16 network 

Number of 

neurons 

Dropout 0.3 Dropout 0.4 Dropout 0.5 Dropout 0.6 Dropout 0.7 

128 Epoch 40/40 

 [9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 32/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 40/40 

 [9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 21/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 19/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 5 2] 

 [0 0 0 0 9] 

Acc: 0.9111 

256 Epoch 39/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 37/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 27/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 24/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 29/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 1 0 0 8] 

Acc: 0.9111 

512 Epoch 27/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 35/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 31/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 1 0 0 8] 

Acc: 0.9111 

Epoch 40/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 26/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9333 

1024 Epoch 25/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 23/40 

 [9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 1 0 8 0] 

 [0 0 0 0 9] 

Acc: 0.9555 

Epoch 26/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 33/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 32/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

2048 Epoch 24/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

acc:0.9111 

Epoch 23/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 1 0 0 8] 

Acc: 0.9111 

Epoch 25/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 29/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 1 0 0 8] 

Acc: 0.9111 

Epoch 23/40 

[9 0 0 0 0] 

 [0 7 0 2 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9111 

 

 

 



 

Table 4: Results of experiments conducted using the Xception network 

 Dropout 0.3 Dropout 0.4 Dropout 0.5 Dropout 0.6 Dropout 0.7 

128 Epoch 28/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 18/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc:0.9333 

Epoch 27/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9556 

Epoch 28/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 1 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 14/40 

 [9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

256 Epoch 17/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 21/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 21/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 16/40 

 [9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9556 

Epoch 40/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 6 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

512 Epoch 29/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 6 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 20/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 15/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 6 0] 

 [0 1 0 0 8] 

Acc: 0.9111 

Epoch 20/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9556 

Epoch 22/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

1024 Epoch 17/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9555 

Epoch 18/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 1 0 8] 

Acc: 0.9333 

Epoch 27/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 3 0 6 0] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 28/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 11/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

2048 Epoch 14/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 28/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9555 

Epoch 26/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 5 1] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 16/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 3 0 6 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 28/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

 

Table 5: Results of experiments conducted using the MobileNetV2 network 

 Dropout 0.3 Dropout 0.4 Dropout 0.5 Dropout 0.6 Dropout 0.7 

128 Epoch 24/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

Epoch 18/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 0 0 8 1] 

Epoch 21/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

Epoch 20/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 1 0 8 0] 

Epoch 28/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 1 0 8 0] 



 

 [0 0 0 0 9] 

Acc: 0.9333 

 [0 0 0 0 9] 

Acc: 0.9555 

 [0 0 0 0 9] 

Acc: 0.9333 

 [0 0 0 0 9] 

Acc: 0.9777 

 [0 0 0 0 9] 

Acc: 0.9555 

256 Epoch 21/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 1 0 8 0] 

 [0 0 0 2 7] 

Acc: 0.9111 

Epoch 20/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 20/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 1 0 8 0] 

 [0 0 0 0 9] 

Acc: 0.9777 

Epoch 13/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 1 0 6 2] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 16/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 6 1] 

 [0 0 0 0 9] 

Acc: 0.9333 

512 Epoch 15/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 12/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 0 0 9 0] 

 [0 0 0 0 9] 

Acc: 0.9777 

Epoch 23/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 0 0 9 0] 

 [0 0 0 0 9] 

Acc: 0.9777 

Epoch 31/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9555 

Epoch 30/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9555 

1024 Epoch 27/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 0 0 8 1] 

 [0 0 0 0 9] 

Acc: 0.9777 

Epoch 20/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9555 

Epoch 17/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 5 2] 

 [0 0 0 0 9] 

Acc: 0.9111 

Epoch 16/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 0 0 9 0] 

 [0 0 0 0 9] 

Acc: 0.9777 

Epoch 21/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 0 0 9 0] 

 [0 0 0 0 9] 

Acc: 0.9777 

2048 Epoch 25/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 1 0 8 0] 

 [0 0 0 1 8] 

Acc: 0.9333 

Epoch 30/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9555 

Epoch 30/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 1 0 8 0] 

 [0 0 0 0 9] 

Acc: 0.9777 

Epoch 24/40 

[9 0 0 0 0] 

 [0 8 0 1 0] 

 [0 0 9 0 0] 

 [0 2 0 7 0] 

 [0 0 0 0 9] 

Acc: 0.9333 

Epoch 13/40 

[9 0 0 0 0] 

 [0 9 0 0 0] 

 [0 0 9 0 0] 

 [0 0 0 8 1] 

 [0 0 0 0 9] 

Acc: 0.9777 

It is noteworthy that all models show good accuracy recognizing water bottles and cans 

of tuna. This is probably because the shape of these products is evidently different from 

the others. On the other hand, in the cases of flour, models often are not able to recognize 

the totality of the images. 

Regarding the performance of the networks, they all obtain very good results. There is no 

significant difference between the different configurations. The best model is obtained 

with MobileNet, which reaches an accuracy of 0.97% with only 13 training epochs. 

4.5 Re-training by defrosting some layers  

To explore the quadrant 𝑫−𝑺−, some layers of the models were defrosted and re-trained.  

In the case of VGG16, layers are defrosted from the 4th convolution block. This means 

moving from having 12,848,133 trainable parameters in the dense layer, to 25,827,333 

trainable parameters and 1,735,488 non-trainable. 



 

In the case of Xception there are 51,383,301 trainable parameters in the dense layer and 

when defrosting the layers from block 7 you have 67,855,541 trainable parameters and 

4,389,240 non-trainable 

Finally, in the case of MobileNet V2 there are 32,378,373 trainable parameters in the 

dense layer and when defrosting the layers from block 9 you have 34,184,197 trainable 

parameters and 189,504 non-trainable. 

After applying this process, the results obtained were similar. The tuned models were not 

able to improve the 97% accuracies already obtained. 

5 Conclusion and future work 

In this article, the process of building a model for image recognition and classification 

using the transfer learning technique, was detailed. The research was based on addressing 

a particular case study, the income of donations to the Food Bank of La Plata. One of the 

determining features of the domain was that the available training dataset was very small. 

Each stage of model development was analysed. The first stage consisted of investigating 

the pre-trained models available for similar tasks and thus selecting the candidates that 

best suit the target problem. Three pre-trained models of different characteristics were 

tested: VGG16, Xception and MobileNetV2. 

The re-training process of these candidate models was then designed, choosing the most 

appropriate training strategies taking into account the size of the dataset and the similarity 

between source and target domains.  

Finally, the candidate models were re-trained by applying the strategies defined in the 

previous step and evaluating different configurations of dropout layers and number of 

neurons. Controlled tests were performed under the same conditions.  

From this analysis it was possible to determine the pre-trained model that acquires 

knowledge faster and achieves better performance. 

The best accuracy was obtained with MobileNet, which reaches 0.97% with only 13 

training times. However, no significant difference was observed between the different 

configurations since all models achieved very good results, greater than 0.90% and in all 

cases without exceeding 40 training epochs. 

The results obtained in the investigations corroborate that the techniques of transfer 

learning in deep neural networks are appropriate to solve tasks of detection and 

classification of images even in cases where there is a very moderate number of samples. 

Future developments: This work can be extended by incorporating other models to the 

analysis and also evaluating different techniques of re-training and adjustment, additional 

to those developed so far. On the other hand, the final model developed for the food bank 

should be integrated into the software applications currently used in the bank for entry 

and recording of donations. This task was started but there are still several tasks to be 

done until the system can be put into operation. 
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