Uma Nova Abordagem para Aplicação de Reforço em Sistemas Automáticos e Adaptativos de Detecção de Estilos de Aprendizagem
Contenido principal del artículo
Resumen
Techniques for Automatic Detection of Learning Styles have been addressed to improve the performance of students who attend Distance Education. The importance of this Automatic Detection lays in the possibility of creating Virtual Learning Environments with automatic adaptation to the students’ profiles, thus providing better experiences and greater efficiency in the learning process. In order to evaluate techniques that aim to detect (and adjust) the Learning Styles from students, this work uses a well-known simulator found in the literature. In this system, combinations of Learning Styles are selected and then the chosen combination is evaluated (simulating its performance) according to the student’s actual learning style. If the performance is unsatisfactory, then a reinforcement is applied in order to guide the system to find the student’s actual Learning Style. The objective of this work is to improve the reinforcement applied in this simulator. Results show that there are statistically significant differences and a superiority of the proposed method in relation to the prevailing literature approach.
Detalles del artículo
Número
Sección
Artigos
El REABTIC se reserva el derecho a realizar cambios ortográficos y gramaticales originales con el fin de seguir el patrón del lenguaje culto.
Los trabajos publicados son propiedad del REABTIC y deben ser informados de la fuente de la publicación.
Las opiniones expresadas en los artÃculos son responsabilidad exclusiva de los autores.